• Previous Article
    On the blow-up of the Cauchy problem of higher-order nonlinear viscoelastic wave equation
  • DCDS-S Home
  • This Issue
  • Next Article
    Stable numerical methods for a stochastic nonlinear Schrödinger equation with linear multiplicative noise
doi: 10.3934/dcdss.2021096
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Effective Mori-Zwanzig equation for the reduced-order modeling of stochastic systems

1. 

Department of Applied Mathematics, University of California, Merced, Merced (CA) 95343, USA

2. 

Department of Computational Mathematics, Michigan State University, East Lansing (MI) 48824, USA

* Corresponding author

Received  February 2021 Revised  June 2021 Early access August 2021

Built upon the hypoelliptic analysis of the effective Mori-Zwanzig (EMZ) equation for observables of stochastic dynamical systems, we show that the obtained semigroup estimates for the EMZ equation can be used to derive prior estimates of the observable statistics for systems in the equilibrium and nonequilibrium state. In addition, we introduce both first-principle and data-driven methods to approximate the EMZ memory kernel and prove the convergence of the data-driven parametrization schemes using the regularity estimate of the memory kernel. The analysis results are validated numerically via the Monte-Carlo simulation of the Langevin dynamics for a Fermi-Pasta-Ulam chain model. With the same example, we also show the effectiveness of the proposed memory kernel approximation methods.

Citation: Yuanran Zhu, Huan Lei. Effective Mori-Zwanzig equation for the reduced-order modeling of stochastic systems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021096
References:
[1]

A. D. Baczewski and S. D. Bond, Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel, J. Chem. Phys., 139 (2013), 044107. doi: 10.1063/1.4815917.  Google Scholar

[2]

M. BerkowitzJ. D. MorganD. J. Kouri and J. A. McCammon, Memory kernels from molecular dynamics, J. Chem. Phys., 75 (1981), 2462-2463.   Google Scholar

[3]

A. J. ChorinO. H. Hald and R. Kupferman, Optimal prediction and the Mori-Zwanzig representation of irreversible processes, Proc. Natl. Acad. Sci. USA, 97 (2000), 2968-2973.  doi: 10.1073/pnas.97.7.2968.  Google Scholar

[4]

W. Chu and X. Li, The Mori–Zwanzig formalism for the derivation of a fluctuating heat conduction model from molecular dynamics, Commun Math Sci., 17 (2019), 539-563.  doi: 10.4310/CMS.2019.v17.n2.a10.  Google Scholar

[5]

J. M. Dominy and D. Venturi, Duality and conditional expectations in the Nakajima-Mori-Zwanzig formulation, J. Math. Phys., 58 (2017), 082701. doi: 10.1063/1.4997015.  Google Scholar

[6]

J.-P. Eckmann and M. Hairer, Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators, Commun. Math. Phys., 212 (2000), 105-164.  doi: 10.1007/s002200000216.  Google Scholar

[7]

J.-P. Eckmann and M. Hairer, Spectral properties of hypoelliptic operators, Commun. Math. Phys., 235 (2003), 233-253.  doi: 10.1007/s00220-003-0805-9.  Google Scholar

[8]

J.-P. EckmannC.-A. Pillet and L. Rey-Bellet, Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, Commun. Math. Phys., 201 (1999), 657-697.  doi: 10.1007/s002200050572.  Google Scholar

[9]

P. Español, Hydrodynamics from dissipative particle dynamics, Phys. Rev. E, 52 (1995), 1734. Google Scholar

[10]

P. Español and P. Warren, Statistical mechanics of dissipative particle dynamics, EPL, 30 (1995), 191. Google Scholar

[11]

S. K. J. Falkena, C. Quinn, J. Sieber, J. Frank and H. A. Dijkstra, Derivation of delay equation climate models using the Mori- Zwanzig formalism, Proc. R. Soc. A, 475 (2019), 20190075, 21 pp. doi: 10.1098/rspa.2019.0075.  Google Scholar

[12]

D. Funaro, Polynomial Approximation of Differential Equations, volume 8, Springer-Verlag, Berlin, 1992.  Google Scholar

[13]

D. GivonR. Kupferman and O. H. Hald, Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism, Isr. J. Math., 145 (2005), 221-241.  doi: 10.1007/BF02786691.  Google Scholar

[14]

F. GroganH. LeiX. Li and N. A. Baker, Data-driven molecular modeling with the generalized Langevin equation, J. Comput. Phys., 418 (2020), 109633-109641.  doi: 10.1016/j.jcp.2020.109633.  Google Scholar

[15]

B. Helffer and F. Nier, Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, Springer, 2005. doi: 10.1007/b104762.  Google Scholar

[16]

F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal, 171 (2004), 151-218.  doi: 10.1007/s00205-003-0276-3.  Google Scholar

[17]

T. Hudson and X. H. Li, Coarse-graining of overdamped Langevin dynamics via the Mori–Zwanzig formalism, Multiscale Modeling & Simulation, 18 (2020), 1113-1135.  doi: 10.1137/18M1222533.  Google Scholar

[18]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, volume 23, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-662-12616-5.  Google Scholar

[19]

H. LeiN. A. Baker and X. Li, Data-driven parameterization of the generalized Langevin equation, Proc. Natl. Acad. Sci., 113 (2016), 14183-14188.  doi: 10.1073/pnas.1609587113.  Google Scholar

[20]

Z. Li, X. Bian, X. Li and G. E. Karniadakis, Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism, J. Chem. Phys., 143 (2015), 243128. doi: 10.1063/1.4935490.  Google Scholar

[21]

Z. Li, H. S. Lee, E. Darve and G. E. Karniadakis, Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts, J. Chem. Phys., 146 (2017), 014104. doi: 10.1063/1.4973347.  Google Scholar

[22]

K. K. Lin and F. Lu, Data-driven model reduction, Wiener projections, and the Mori-Zwanzig formalism, J. Comput. Phys., 424 (2021), Paper No. 109864, 33 pp. arXiv preprint arXiv: 1908.07725, 2019. doi: 10.1016/j.jcp.2020.109864.  Google Scholar

[23]

F. LuK. K. Lin and A. J. Chorin, Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation, Physica D, 340 (2017), 46-57.  doi: 10.1016/j.physd.2016.09.007.  Google Scholar

[24]

H. Mori, Transport, collective motion, and Brownian motion, Prog. Theor. Phys., 33 (1965), 423-455.  doi: 10.1143/PTP.33.423.  Google Scholar

[25]

T. MoritaH. Mori and K. T. Mashiyama, Contraction of state variables in Non-Equilibrium open systems. II, Prog. Theor. Phys., 64 (1980), 500-521.  doi: 10.1143/PTP.64.500.  Google Scholar

[26]

E. J. Parish and K. Duraisamy, Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism, Phys. Rev. Fluids, 2 (2017), 014604. doi: 10.1103/PhysRevFluids.2.014604.  Google Scholar

[27]

G. A. Pavliotis, Stochastic Processes and Applications: Diffusion processes, the Fokker-Planck and Langevin Equations, volume 60., Springer, 2014. doi: 10.1007/978-1-4939-1323-7.  Google Scholar

[28]

H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, Second edition. Springer Series in Synergetics, 18. Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-61544-3.  Google Scholar

[29]

P. Stinis, Stochastic optimal prediction for the Kuramoto–Sivashinsky equation, Multiscale Modeling & Simulation, 2 (2004), 580-612.  doi: 10.1137/030600424.  Google Scholar

[30]

R. Tibshirani, Regression shrinkage and selection via the Lasso, J. Royal Stat. Soc. Ser. B, 58 (1996), 267-288.  doi: 10.1111/j.2517-6161.1996.tb02080.x.  Google Scholar

[31]

D. Venturi and G. E. Karniadakis, Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 1-20.  doi: 10.1098/rspa.2013.0754.  Google Scholar

[32]

D. VenturiT. P. SapsisH. Cho and G. E. Karniadakis, A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems, Proc. R. Soc. A, 468 (2012), 759-783.  doi: 10.1098/rspa.2011.0186.  Google Scholar

[33]

Y. Yoshimoto, I. Kinefuchi, T. Mima, A. Fukushima, T. Tokumasu and S. Takagi, Bottom-up construction of interaction models of non-Markovian dissipative particle dynamics, Phys. Rev. E, 88 (2013), 043305. doi: 10.1103/PhysRevE.88.043305.  Google Scholar

[34]

Y. Zhu, J. M. Dominy and D. Venturi, On the estimation of the Mori-Zwanzig memory integral, J. Math. Phys., 59 (2018), 103501. doi: 10.1063/1.5003467.  Google Scholar

[35]

Y. Zhu, H. Lei and C. Kim, Generalized second fluctuation-dissipation theorem in the nonequilibrium steady state: Theory and applications, arXiv preprint arXiv: 2104.05222, 2021. Google Scholar

[36]

Y. Zhu and D. Venturi, Faber approximation of the Mori-Zwanzig equation, J. Comp. Phys., 372 (2018), 694-718.  doi: 10.1016/j.jcp.2018.06.047.  Google Scholar

[37]

Y. Zhu and D. Venturi, Generalized langevin equations for systems with local interactions, J. Stat. Phys., 178 (2020), 1217-1247.  doi: 10.1007/s10955-020-02499-y.  Google Scholar

[38]

Y. Zhu and D. Venturi, Hypoellipticity and the Mori-Zwanzig formulation of stochastic differential equations, arXiv preprint arXiv: 2001.04565, 2020. Google Scholar

[39]

R. Zwanzig, Memory effects in irreversible thermodynamics, Phys. Rev., 124 (1961), 983. doi: 10.1103/PhysRev.124.983.  Google Scholar

[40]

R. Zwanzig, Nonlinear generalized Langevin equations, J. Stat. Phys., 9 (1973), 215-220.  doi: 10.1007/BF01008729.  Google Scholar

show all references

References:
[1]

A. D. Baczewski and S. D. Bond, Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel, J. Chem. Phys., 139 (2013), 044107. doi: 10.1063/1.4815917.  Google Scholar

[2]

M. BerkowitzJ. D. MorganD. J. Kouri and J. A. McCammon, Memory kernels from molecular dynamics, J. Chem. Phys., 75 (1981), 2462-2463.   Google Scholar

[3]

A. J. ChorinO. H. Hald and R. Kupferman, Optimal prediction and the Mori-Zwanzig representation of irreversible processes, Proc. Natl. Acad. Sci. USA, 97 (2000), 2968-2973.  doi: 10.1073/pnas.97.7.2968.  Google Scholar

[4]

W. Chu and X. Li, The Mori–Zwanzig formalism for the derivation of a fluctuating heat conduction model from molecular dynamics, Commun Math Sci., 17 (2019), 539-563.  doi: 10.4310/CMS.2019.v17.n2.a10.  Google Scholar

[5]

J. M. Dominy and D. Venturi, Duality and conditional expectations in the Nakajima-Mori-Zwanzig formulation, J. Math. Phys., 58 (2017), 082701. doi: 10.1063/1.4997015.  Google Scholar

[6]

J.-P. Eckmann and M. Hairer, Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators, Commun. Math. Phys., 212 (2000), 105-164.  doi: 10.1007/s002200000216.  Google Scholar

[7]

J.-P. Eckmann and M. Hairer, Spectral properties of hypoelliptic operators, Commun. Math. Phys., 235 (2003), 233-253.  doi: 10.1007/s00220-003-0805-9.  Google Scholar

[8]

J.-P. EckmannC.-A. Pillet and L. Rey-Bellet, Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, Commun. Math. Phys., 201 (1999), 657-697.  doi: 10.1007/s002200050572.  Google Scholar

[9]

P. Español, Hydrodynamics from dissipative particle dynamics, Phys. Rev. E, 52 (1995), 1734. Google Scholar

[10]

P. Español and P. Warren, Statistical mechanics of dissipative particle dynamics, EPL, 30 (1995), 191. Google Scholar

[11]

S. K. J. Falkena, C. Quinn, J. Sieber, J. Frank and H. A. Dijkstra, Derivation of delay equation climate models using the Mori- Zwanzig formalism, Proc. R. Soc. A, 475 (2019), 20190075, 21 pp. doi: 10.1098/rspa.2019.0075.  Google Scholar

[12]

D. Funaro, Polynomial Approximation of Differential Equations, volume 8, Springer-Verlag, Berlin, 1992.  Google Scholar

[13]

D. GivonR. Kupferman and O. H. Hald, Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism, Isr. J. Math., 145 (2005), 221-241.  doi: 10.1007/BF02786691.  Google Scholar

[14]

F. GroganH. LeiX. Li and N. A. Baker, Data-driven molecular modeling with the generalized Langevin equation, J. Comput. Phys., 418 (2020), 109633-109641.  doi: 10.1016/j.jcp.2020.109633.  Google Scholar

[15]

B. Helffer and F. Nier, Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians, Springer, 2005. doi: 10.1007/b104762.  Google Scholar

[16]

F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal, 171 (2004), 151-218.  doi: 10.1007/s00205-003-0276-3.  Google Scholar

[17]

T. Hudson and X. H. Li, Coarse-graining of overdamped Langevin dynamics via the Mori–Zwanzig formalism, Multiscale Modeling & Simulation, 18 (2020), 1113-1135.  doi: 10.1137/18M1222533.  Google Scholar

[18]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, volume 23, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-662-12616-5.  Google Scholar

[19]

H. LeiN. A. Baker and X. Li, Data-driven parameterization of the generalized Langevin equation, Proc. Natl. Acad. Sci., 113 (2016), 14183-14188.  doi: 10.1073/pnas.1609587113.  Google Scholar

[20]

Z. Li, X. Bian, X. Li and G. E. Karniadakis, Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism, J. Chem. Phys., 143 (2015), 243128. doi: 10.1063/1.4935490.  Google Scholar

[21]

Z. Li, H. S. Lee, E. Darve and G. E. Karniadakis, Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts, J. Chem. Phys., 146 (2017), 014104. doi: 10.1063/1.4973347.  Google Scholar

[22]

K. K. Lin and F. Lu, Data-driven model reduction, Wiener projections, and the Mori-Zwanzig formalism, J. Comput. Phys., 424 (2021), Paper No. 109864, 33 pp. arXiv preprint arXiv: 1908.07725, 2019. doi: 10.1016/j.jcp.2020.109864.  Google Scholar

[23]

F. LuK. K. Lin and A. J. Chorin, Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation, Physica D, 340 (2017), 46-57.  doi: 10.1016/j.physd.2016.09.007.  Google Scholar

[24]

H. Mori, Transport, collective motion, and Brownian motion, Prog. Theor. Phys., 33 (1965), 423-455.  doi: 10.1143/PTP.33.423.  Google Scholar

[25]

T. MoritaH. Mori and K. T. Mashiyama, Contraction of state variables in Non-Equilibrium open systems. II, Prog. Theor. Phys., 64 (1980), 500-521.  doi: 10.1143/PTP.64.500.  Google Scholar

[26]

E. J. Parish and K. Duraisamy, Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism, Phys. Rev. Fluids, 2 (2017), 014604. doi: 10.1103/PhysRevFluids.2.014604.  Google Scholar

[27]

G. A. Pavliotis, Stochastic Processes and Applications: Diffusion processes, the Fokker-Planck and Langevin Equations, volume 60., Springer, 2014. doi: 10.1007/978-1-4939-1323-7.  Google Scholar

[28]

H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, Second edition. Springer Series in Synergetics, 18. Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-61544-3.  Google Scholar

[29]

P. Stinis, Stochastic optimal prediction for the Kuramoto–Sivashinsky equation, Multiscale Modeling & Simulation, 2 (2004), 580-612.  doi: 10.1137/030600424.  Google Scholar

[30]

R. Tibshirani, Regression shrinkage and selection via the Lasso, J. Royal Stat. Soc. Ser. B, 58 (1996), 267-288.  doi: 10.1111/j.2517-6161.1996.tb02080.x.  Google Scholar

[31]

D. Venturi and G. E. Karniadakis, Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 1-20.  doi: 10.1098/rspa.2013.0754.  Google Scholar

[32]

D. VenturiT. P. SapsisH. Cho and G. E. Karniadakis, A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems, Proc. R. Soc. A, 468 (2012), 759-783.  doi: 10.1098/rspa.2011.0186.  Google Scholar

[33]

Y. Yoshimoto, I. Kinefuchi, T. Mima, A. Fukushima, T. Tokumasu and S. Takagi, Bottom-up construction of interaction models of non-Markovian dissipative particle dynamics, Phys. Rev. E, 88 (2013), 043305. doi: 10.1103/PhysRevE.88.043305.  Google Scholar

[34]

Y. Zhu, J. M. Dominy and D. Venturi, On the estimation of the Mori-Zwanzig memory integral, J. Math. Phys., 59 (2018), 103501. doi: 10.1063/1.5003467.  Google Scholar

[35]

Y. Zhu, H. Lei and C. Kim, Generalized second fluctuation-dissipation theorem in the nonequilibrium steady state: Theory and applications, arXiv preprint arXiv: 2104.05222, 2021. Google Scholar

[36]

Y. Zhu and D. Venturi, Faber approximation of the Mori-Zwanzig equation, J. Comp. Phys., 372 (2018), 694-718.  doi: 10.1016/j.jcp.2018.06.047.  Google Scholar

[37]

Y. Zhu and D. Venturi, Generalized langevin equations for systems with local interactions, J. Stat. Phys., 178 (2020), 1217-1247.  doi: 10.1007/s10955-020-02499-y.  Google Scholar

[38]

Y. Zhu and D. Venturi, Hypoellipticity and the Mori-Zwanzig formulation of stochastic differential equations, arXiv preprint arXiv: 2001.04565, 2020. Google Scholar

[39]

R. Zwanzig, Memory effects in irreversible thermodynamics, Phys. Rev., 124 (1961), 983. doi: 10.1103/PhysRev.124.983.  Google Scholar

[40]

R. Zwanzig, Nonlinear generalized Langevin equations, J. Stat. Phys., 9 (1973), 215-220.  doi: 10.1007/BF01008729.  Google Scholar

Figure 1.  Sample path of the tagged oscillator momentum $ p_{50}(t) $. We display the result for the stochastic FPU system (52) with weak ($ \theta = 0.1 $) and strong nonlinearity ($ \theta = 1 $) at high ($ \beta = 1 $) and low ($ \beta = 20 $) temperature
Figure 2.  Temporal auto-correlation function of the tagged oscillator momentum $ p_j(t) $ for weakly nonlinear FPU system at different temperature $ T\propto 1/\beta $. We compare results we obtained by calculating the EMZ memory from first principles using $ 14 $-th order Faber polynomials with results from MC simulation ($ 10^6 $ sample paths). In the subplots, we display $ |C(t)/C(0)| $ and the exponentially decaying upper bound $ ce^{-\alpha t} $ with an estimated decaying rate $ \alpha $
Figure 2">Figure 3.  Approximated EMZ memory kernel corresponding to the tagged particle momentum correlation function $ C(t) $. The subplots display $ |K(t)/K(0)| $ and the exponentially decaying upper bound $ c_{{\mathcal{Q}}}e^{-\alpha_{{\mathcal{Q}}}t} $ with an estimated decaying rate $ \alpha_{{\mathcal{Q}}} $. Other setting is same as Figure 2
Figure 4.  Temporal auto-correlation function of the tagged oscillator momentum $ p_j(t) $ for strongly nonlinear FPU system at different temperature $ T\propto 1/\beta $. The MC simulation results ($ 10^6 $ sample paths) of the correlation function are compared with the one obtained by the data-driven memory kernel using Faber series (20th order) and the standard Laguerre polynomials (20th order). In the subplots, we display $ |C(t)/C(0)| $ and the exponentially decaying upper bound $ ce^{-\alpha t} $ with an estimated decaying rate $ \alpha $
Figure 5.  Comparison of the dynamics of the particle momentum $ p_{50}(t) $ generated by the MC simulation and the ROM (55). The displayed results are for a stochastic FPU system with strong nonlinearity ($ \theta = 1 $) at high temperature $ \beta = 1 $ (first row) and low temperature $ \beta = 20 $ (second row). In the first column, we compare the simulated sample paths. The time autocorrelation functions $ C(t)/C(0) $ (second column) are obtained by averaging a cluster of the sample trajectories. The third column compares the stationary distribution of the stochastic process $ \rho_{p_{50}} $ which are obtained via kernel density estimations
[1]

Jing Li, Panos Stinis. Mori-Zwanzig reduced models for uncertainty quantification. Journal of Computational Dynamics, 2019, 6 (1) : 39-68. doi: 10.3934/jcd.2019002

[2]

Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Addendum to "Optimal control of multiscale systems using reduced-order models". Journal of Computational Dynamics, 2017, 4 (1&2) : 167-167. doi: 10.3934/jcd.2017006

[3]

Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Optimal control of multiscale systems using reduced-order models. Journal of Computational Dynamics, 2014, 1 (2) : 279-306. doi: 10.3934/jcd.2014.1.279

[4]

Luigi C. Berselli, Tae-Yeon Kim, Leo G. Rebholz. Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier-Stokes-Voigt regularization. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1027-1050. doi: 10.3934/dcdsb.2016.21.1027

[5]

Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375

[6]

Lingling Lv, Wei He, Xianxing Liu, Lei Zhang. A robust reduced-order observers design approach for linear discrete periodic systems. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2799-2812. doi: 10.3934/jimo.2019081

[7]

Zhendong Luo. A reduced-order SMFVE extrapolation algorithm based on POD technique and CN method for the non-stationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1189-1212. doi: 10.3934/dcdsb.2015.20.1189

[8]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[9]

Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259

[10]

Roger Grimshaw, Dmitry Pelinovsky. Global existence of small-norm solutions in the reduced Ostrovsky equation. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 557-566. doi: 10.3934/dcds.2014.34.557

[11]

Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883

[12]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[13]

Ruy Coimbra Charão, Juan Torres Espinoza, Ryo Ikehata. A second order fractional differential equation under effects of a super damping. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4433-4454. doi: 10.3934/cpaa.2020202

[14]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[15]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[16]

Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683

[17]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[18]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[19]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[20]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4887-4905. doi: 10.3934/dcdsb.2020317

2020 Impact Factor: 2.425

Article outline

Figures and Tables

[Back to Top]