[1]
|
C. Andrieu, A. Doucet and R. Holenstein, Particle markov chain monte carlo methods, J. R. Statist. Soc. B, 72 (2010), 269-342.
doi: 10.1111/j.1467-9868.2009.00736.x.
|
[2]
|
C. Andrieu and G. O. Roberts, The pseudo-marginal approach for efficient monte carlo computations, Ann. Statist., 37 (2009), 697-725.
doi: 10.1214/07-AOS574.
|
[3]
|
R. Archibald, F. Bao and X. Tu, A direct filter method for parameter estimation, J. Comput. Phys., 398 (2019), 108871, 17 pp.
doi: 10.1016/j.jcp.2019.108871.
|
[4]
|
F. Bao, R. Archibald and P. Maksymovych, Lévy backward SDE filter for jump diffusion processes and its applications in material sciences, Communications in Computational Physics, 27 (2020), 589-618.
doi: 10.4208/cicp.OA-2018-0238.
|
[5]
|
F. Bao, Y. Cao and H. Chi, Adjoint forward backward stochastic differential equations driven by jump diffusion processes and its application to nonlinear filtering problems, Int. J. Uncertain. Quantif., 9 (2019), 143-159.
doi: 10.1615/Int.J.UncertaintyQuantification.2019028300.
|
[6]
|
F. Bao, Y. Cao and X. Han, An implicit algorithm of solving nonlinear filtering problems, Communications in Computational Physics, 16 (2014), 382-402.
doi: 10.4208/cicp.180313.130214a.
|
[7]
|
F. Bao, Y. Cao and X. Han, Forward backward doubly stochastic differential equations and optimal filtering of diffusion processes, Communications in Mathematical Sciences, 18 (2020), 635-661.
doi: 10.4310/CMS.2020.v18.n3.a3.
|
[8]
|
F. Bao, Y. Cao, A. Meir and W. Zhao, A first order scheme for backward doubly stochastic differential equations, SIAM/ASA J. Uncertain. Quantif., 4 (2016), 413-445.
doi: 10.1137/14095546X.
|
[9]
|
F. Bao, Y. Cao, C. Webster and G. Zhang, A hybrid sparse-grid approach for nonlinear filtering problems based on adaptive-domain of the Zakai equation approximations, SIAM/ASA J. Uncertain. Quantif., 2 (2014), 784-804.
doi: 10.1137/140952910.
|
[10]
|
F. Bao, Y. Cao and W. Zhao, Numerical solutions for forward backward doubly stochastic differential equations and zakai equations, International Journal for Uncertainty Quantification, 1 (2011), 351-367.
doi: 10.1615/Int.J.UncertaintyQuantification.2011003508.
|
[11]
|
F. Bao, Y. Cao and W. Zhao, A first order semi-discrete algorithm for backward doubly stochastic differential equations, Discrete and Continuous Dynamical Systems-Series B, 20 (2015), 1297-1313.
doi: 10.3934/dcdsb.2015.20.1297.
|
[12]
|
F. Bao, Y. Cao and W. Zhao, A backward doubly stochastic differential equation approach for nonlinear filtering problems, Commun. Comput. Phys., 23 (2018), 1573-1601.
doi: 10.4208/cicp.oa-2017-0084.
|
[13]
|
F. Bao and V. Maroulas, Adaptive meshfree backward SDE filter, SIAM J. Sci. Comput., 39 (2017), A2664–A2683.
doi: 10.1137/16M1100277.
|
[14]
|
A. J. Chorin and X. Tu, Implicit sampling for particle filters, Proc. Nat. Acad. Sc. USA, 106 (2009), 17249-17254.
doi: 10.1073/pnas.0909196106.
|
[15]
|
D. Crisan, Exact rates of convergence for a branching particle approximation to the solution of the Zakai equation, Ann. Probab., 31 (2003), 693-718.
doi: 10.1214/aop/1048516533.
|
[16]
|
D. Crisan and A. Doucet, A survey of convergence results on particle filtering methods for practitioners, IEEE Trans. Sig. Proc., 50 (2002), 736-746.
doi: 10.1109/78.984773.
|
[17]
|
A. Doucet and A. M. Johansen, A tutorial on particle filtering and smoothing: Fifteen years later, The Oxford Handbook of Nonlinear Filtering, 2011,656–704.
|
[18]
|
O. Dyck, M. Ziatdinov, S. Jesse, F. Bao, A. Yousefzadi Nobakht, A. Maksov, B. G. Sumpter, R. Archibald, K. J. H. Law and S. V. Kalinin, Probing potential energy landscapes via electron-beam-induced single atom dynamics, Acta Materialia, 203 (2021), 116508.
|
[19]
|
G. Evensen, Data Assimilation: The Ensemble Kalman Filter, Springer, 2009.
doi: 10.1007/978-3-642-03711-5.
|
[20]
|
G. Evensen, The ensemble Kalman filter for combined state and parameter estimation: Monte Carlo techniques for data assimilation in large systems, IEEE Control Syst. Mag., 29 (2009), 83-104.
doi: 10.1109/MCS.2009.932223.
|
[21]
|
E. Gobet, G. Pagès, H. Pham and J. Printems, Discretization and simulation of the Zakai equation, SIAM J. Numer. Anal., 44 (2006), 2505–2538 (electronic).
doi: 10.1137/050623140.
|
[22]
|
N. J Gordon, D. J Salmond and A. F. M. Smith, Novel approach to nonlinear/non-gaussian bayesian state estimation, IEE Proceeding-F, 140 (1993), 107-113.
doi: 10.1049/ip-f-2.1993.0015.
|
[23]
|
S. J. Julier and J. K. Uhlmann, Unscented filtering and nonlinear estimation, Proceedings of the IEEE, 92 (2004), 401-422.
doi: 10.1109/JPROC.2003.823141.
|
[24]
|
K. Kang, V. Maroulas, I. Schizas and F. Bao, Improved distributed particle filters for tracking in a wireless sensor network, Comput. Statist. Data Anal., 117 (2018), 90-108.
doi: 10.1016/j.csda.2017.07.009.
|
[25]
|
H. R. Kunsch, Particle filters, Bernoulli, 19 (2013), 1391-1403.
doi: 10.3150/12-BEJSP07.
|
[26]
|
F. Le Gland, Time discretization of nonlinear filtering equations, In Proceedings of the 28th IEEE Conference on Decision and Control, Vol. 1–3 (Tampa, FL, 1989), 2601–2606, New York, 1989. IEEE.
|
[27]
|
V. Maroulas and P. Stinis, Improved particle filters for multi-target tracking, Journal of Computational Physics, 231 (2012), 602-611.
doi: 10.1016/j.jcp.2011.09.023.
|
[28]
|
M. Morzfeld, X. Tu, E. Atkins and A. J. Chorin, A random map implementation of implicit filters, J. Comput. Phys., 231 (2012), 2049-2066.
doi: 10.1016/j.jcp.2011.11.022.
|
[29]
|
M. K. Pitt and N. Shephard, Filtering via simulation: Auxiliary particle filters, J. Amer. Statist. Assoc., 94 (1999), 590-599.
doi: 10.1080/01621459.1999.10474153.
|
[30]
|
C. Snyder, T. Bengtsson, P. Bickel and J. Anderson, Obstacles to high-dimensional particle filtering, Mon. Wea. Rev., 136 (2008), 4629-4640.
doi: 10.1175/2008MWR2529.1.
|
[31]
|
T. Song and J. Speyer, A stochastic analysis of a modified gain extended kalman filter with applications to estimation with bearings only measurements, IEEE Transactions on Automatic Control, 30 (1985), 940-949.
|
[32]
|
X. T. Tong, A. J. Majda and D. Kelly, Nonlinear stability and ergodicity of ensemble based Kalman filters, Nonlinearity, 29 (2016), 657-691.
doi: 10.1088/0951-7715/29/2/657.
|
[33]
|
P. J. van Leeuwen, Nonlinear data assimilation in geosciences: An extremely efficient particle filter, Q. J. Roy. Meteor. Soc., 136 (2010), 1991-1999.
doi: 10.1002/qj.699.
|
[34]
|
B. Wang, X. Zou and J. Zhu, Data assimilation and its applications, Proceedings of the National Academy of Sciences, 97 (2000), 11143-11144.
doi: 10.1073/pnas.97.21.11143.
|
[35]
|
M. Zakai, On the optimal filtering of diffusion processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 11 (1969), 230-243.
doi: 10.1007/BF00536382.
|