September  2022, 15(9): 2581-2607. doi: 10.3934/dcdss.2021100

Using random walks to establish wavelike behavior in a linear FPUT system with random coefficients

Department of Mathematics, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104

Received  March 2021 Revised  July 2021 Published  September 2022 Early access  August 2021

We consider a linear Fermi-Pasta-Ulam-Tsingou lattice with random spatially varying material coefficients. Using the methods of stochastic homogenization we show that solutions with long wave initial data converge in an appropriate sense to solutions of a wave equation. The convergence is strong and both almost sure and in expectation, but the rate is quite slow. The technique combines energy estimates with powerful classical results about random walks, specifically the law of the iterated logarithm.

Citation: Joshua A. McGinnis, J. Douglas Wright. Using random walks to establish wavelike behavior in a linear FPUT system with random coefficients. Discrete and Continuous Dynamical Systems - S, 2022, 15 (9) : 2581-2607. doi: 10.3934/dcdss.2021100
References:
[1]

M. Chirilus-BrucknerC. ChongO. Prill and G. Schneider, Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 879-901.  doi: 10.3934/dcdss.2012.5.879.

[2]

D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Ser. Math. Appl., 17, The Clarendon Press, Oxford University Press, New York, 1999.

[3]

R. Durret, Probability, Theory and Examples, Cambride Ser. in Stat. and Prob. Math., Cambridge University Press, New York, 2010. doi: 10.1017/CBO9780511779398.

[4]

W. Feller, The General Form of the So Called Law of the Iterated Logarithm, Trans. Amer. Math. Soc., 54 (1943), 373-402.  doi: 10.1090/S0002-9947-1943-0009263-7.

[5]

J. GaisonS. MoskowJ. D. Wright and Q. Zhang, Approximation of Polyatomic FPU Lattices by KdV Equations, Mult. Scale Model. Simul., 12 (2014), 953-995.  doi: 10.1137/130941638.

[6]

A. J. Martínez, P. G. Kevrekidis and M. A. Porter., Superdiffusive tansport and energy localization in disordered granular crystals, Phys Rev. E, 93 (2016), 022902. doi: 10.1103/physreve.93.022902.

[7]

J. McNameeF. Stenger and E. L. Whitney, Whittaker's cardinal function in retrospect, Mathematics of Computation, 25 (1971), 141-154.  doi: 10.2307/2005140.

[8]

A. Mielke, Macroscopic behavior of microscopic oscillations in harmonic lattices via Wigner-Husimi transforms, Arch. Rational Mech. Anal., 181 (2006), 401-448.  doi: 10.1007/s00205-005-0405-2.

[9]

Y. OkadaS. Watanabe and H. Tanaca, Solitary wave in periodic nonlinear lattice, J. Phys. Soc. Jpn., 59 (1990), 2647-2658.  doi: 10.1143/JPSJ.59.2647.

[10]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model, International Conference on Differential Equations, Vols. 1, 2 (Berlin, 1999), World Scientific, River Edge, NJ, 2000,390–404.

[11]

H. Yoshida, Construction of higher order symplectic integrators, Phys. Let. A, 150 (1990), 262-268.  doi: 10.1016/0375-9601(90)90092-3.

show all references

References:
[1]

M. Chirilus-BrucknerC. ChongO. Prill and G. Schneider, Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 879-901.  doi: 10.3934/dcdss.2012.5.879.

[2]

D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Ser. Math. Appl., 17, The Clarendon Press, Oxford University Press, New York, 1999.

[3]

R. Durret, Probability, Theory and Examples, Cambride Ser. in Stat. and Prob. Math., Cambridge University Press, New York, 2010. doi: 10.1017/CBO9780511779398.

[4]

W. Feller, The General Form of the So Called Law of the Iterated Logarithm, Trans. Amer. Math. Soc., 54 (1943), 373-402.  doi: 10.1090/S0002-9947-1943-0009263-7.

[5]

J. GaisonS. MoskowJ. D. Wright and Q. Zhang, Approximation of Polyatomic FPU Lattices by KdV Equations, Mult. Scale Model. Simul., 12 (2014), 953-995.  doi: 10.1137/130941638.

[6]

A. J. Martínez, P. G. Kevrekidis and M. A. Porter., Superdiffusive tansport and energy localization in disordered granular crystals, Phys Rev. E, 93 (2016), 022902. doi: 10.1103/physreve.93.022902.

[7]

J. McNameeF. Stenger and E. L. Whitney, Whittaker's cardinal function in retrospect, Mathematics of Computation, 25 (1971), 141-154.  doi: 10.2307/2005140.

[8]

A. Mielke, Macroscopic behavior of microscopic oscillations in harmonic lattices via Wigner-Husimi transforms, Arch. Rational Mech. Anal., 181 (2006), 401-448.  doi: 10.1007/s00205-005-0405-2.

[9]

Y. OkadaS. Watanabe and H. Tanaca, Solitary wave in periodic nonlinear lattice, J. Phys. Soc. Jpn., 59 (1990), 2647-2658.  doi: 10.1143/JPSJ.59.2647.

[10]

G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model, International Conference on Differential Equations, Vols. 1, 2 (Berlin, 1999), World Scientific, River Edge, NJ, 2000,390–404.

[11]

H. Yoshida, Construction of higher order symplectic integrators, Phys. Let. A, 150 (1990), 262-268.  doi: 10.1016/0375-9601(90)90092-3.

Figure 1.  Figure 1 is a log-log plot of the relative error $ \rho $ divided by $ \sqrt{\log\log(1/\epsilon)}. $
Figure 2.  Figure 2 is 10 box plots of 40 different realization of masses at 10 various epsilons. It is also log-log
Figure 3.  Figure 3 is a log-log plot of the relative error masses chosen periodically
Figure 4.  In Figure 4 masses are chosen so that $ \chi(j) $ will grow like $ \sqrt{j} $
Figure 5.  In Figure 5 $ \epsilon $ is fixed and small while $ \sigma $ is varied and the absolute error is measured. When $ \sigma $ is smallest, the data is concentrated near the error for the constant coefficient case
[1]

Alexander Pankov, Vassilis M. Rothos. Traveling waves in Fermi-Pasta-Ulam lattices with saturable nonlinearities. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 835-849. doi: 10.3934/dcds.2011.30.835

[2]

Alexander Pankov. Traveling waves in Fermi-Pasta-Ulam chains with nonlocal interaction. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2097-2113. doi: 10.3934/dcdss.2019135

[3]

Simone Paleari, Tiziano Penati. Equipartition times in a Fermi-Pasta-Ulam system. Conference Publications, 2005, 2005 (Special) : 710-719. doi: 10.3934/proc.2005.2005.710

[4]

Antonio Giorgilli, Simone Paleari, Tiziano Penati. Local chaotic behaviour in the Fermi-Pasta-Ulam system. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 991-1004. doi: 10.3934/dcdsb.2005.5.991

[5]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2221-2245. doi: 10.3934/cpaa.2016035

[6]

Alejandro B. Aceves, Luis A. Cisneros-Ake, Antonmaria A. Minzoni. Asymptotics for supersonic traveling waves in the Morse lattice. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 975-994. doi: 10.3934/dcdss.2011.4.975

[7]

Aaron Hoffman, Benjamin Kennedy. Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 137-167. doi: 10.3934/dcds.2011.30.137

[8]

Giuseppe Da Prato, Arnaud Debussche. Asymptotic behavior of stochastic PDEs with random coefficients. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1553-1570. doi: 10.3934/dcds.2010.27.1553

[9]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[10]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5023-5045. doi: 10.3934/dcdsb.2020323

[11]

Renhai Wang, Yangrong Li. Backward compactness and periodicity of random attractors for stochastic wave equations with varying coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4145-4167. doi: 10.3934/dcdsb.2019054

[12]

Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou. Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1 (4) : 537-568. doi: 10.3934/nhm.2006.1.537

[13]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[14]

Li Song, Yangrong Li, Fengling Wang. Controller and asymptotic autonomy of random attractors for stochastic p-Laplace lattice equations. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022010

[15]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control and Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[16]

Luis Caffarelli, Antoine Mellet. Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3 (3) : 523-554. doi: 10.3934/nhm.2008.3.523

[17]

Paweł Góra, Abraham Boyarsky. Stochastic perturbations and Ulam's method for W-shaped maps. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1937-1944. doi: 10.3934/dcds.2013.33.1937

[18]

Stephen Coombes, Helmut Schmidt, Carlo R. Laing, Nils Svanstedt, John A. Wyller. Waves in random neural media. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2951-2970. doi: 10.3934/dcds.2012.32.2951

[19]

Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125.

[20]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (405)
  • HTML views (358)
  • Cited by (0)

Other articles
by authors

[Back to Top]