In the paper under study, we consider the following coupled non-degenerate Kirchhoff system
$\begin{equation} \left \{ \begin{aligned} & y_{tt}-\mathtt{φ}\Big(\int_\Omega | \nabla y |^2\,dx\Big)\Delta y +\mathtt{α} \Delta \mathtt{θ} = 0, &{\rm{ in }}&\; \Omega \times (0, +\infty)\\ & \mathtt{θ}_t-\Delta \mathtt{θ}-\mathtt{β} \Delta y_t = 0, &{\rm{ in }}&\; \Omega \times (0, +\infty)\\ & y = \mathtt{θ} = 0,\; &{\rm{ on }}&\;\partial\Omega\times(0, +\infty)\\ & y(\cdot, 0) = y_0, \; y_t(\cdot, 0) = y_1,\;\mathtt{θ}(\cdot, 0) = \mathtt{θ}_0, \; \; &{\rm{ in }}&\; \Omega\\ \end{aligned} \right. \end{equation} \ \ \ \ \ \ \ \ \ \ \ \ \ (1)$
where $ \Omega $ is a bounded open subset of $ \mathbb{R}^n $, $ \mathtt{α} $ and $ \mathtt{β} $ be two nonzero real numbers with the same sign and $ \mathtt{φ} $ is given by $ \mathtt{φ}(s) = \mathfrak{m}_0+\mathfrak{m}_1s $ with some positive constants $ \mathfrak{m}_0 $ and $ \mathfrak{m}_1 $. So we prove existence of solution and establish its exponential decay. The method used is based on multiplier technique and some integral inequalities due to Haraux and Komornik[
Citation: |
[1] |
R. A. Adams, Sobolev Spaces, Academic press, Pure and Applied Mathematics, vol. 65, 1975.
![]() ![]() |
[2] |
P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system, Electron. J. Differential Equations, 2000 (2000), No. 22, 15 pp.
![]() ![]() |
[3] |
A. Benaissa and A. Guesmia, Global existence and general decay estimates of solutions for degenerate or non-degenerate Kirchhoff equation with general dissipation, J. Evol. Equation, 11 (2011), 1399-1424.
doi: 10.1007/s00028-010-0076-9.![]() ![]() |
[4] |
B. Gilbert, A. Ben Aissa and S. Nicaise, Same decay rate of second order evolution equations with or without delay, Systems Control Lett., 141 (2020), 104700, 8 pp.
doi: 10.1016/j.sysconle.2020.104700.![]() ![]() ![]() |
[5] |
A. Haraux, Two remarks on dissipative hyperbolic problems, in Lions, J. L. and Brezis, H. (Eds): Nonlinear Partial Differential Equations and Their Applications, College de France Seminar Volume XVIII (Research Notes in Mathematics, Vol. 122), Pitman: Boston, MA, (1985), 161–179.
![]() ![]() |
[6] |
V. Keyantuo, L. Tebou and M. Warma, A gevrey class semigroup for a thermoelastic plate model with a fractional Laplacian: Between the Euler-Bernoulli and Kirchhoff models, Discrete Contin. Dyn. Syst., 40 (2020), 2875-2889.
doi: 10.3934/dcds.2020152.![]() ![]() ![]() |
[7] |
G. Kirchhoff, Vorlesungen uber Mechanik, Teubner, Leipzig, 1897.
![]() |
[8] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson Wiley, Paris (1994).
![]() ![]() |
[9] |
I. Lasiecka, S. Maad and A. Sasane, Existence and exponential decay of solutions to a quasilinear thermoelastic plate system, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 689-715.
doi: 10.1007/s00030-008-0011-8.![]() ![]() ![]() |
[10] |
I. Lasiecka, M. Pokojovy and X. Wan, Long-time behavior of quasilinear thermoelastic Kirchhoff/Love plates with second sound, Nonlinear Analysis, 186 (2019), 219-258.
doi: 10.1016/j.na.2019.02.019.![]() ![]() ![]() |
[11] |
G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rational Mech. Anal., 141 (1998), 297–329.
doi: 10.1007/s002050050078.![]() ![]() ![]() |
[12] |
J.-L. Lions, Quelques Méthodes De Résolution Des Problémes Aux Limites Nonlinéaires, Dund Gautier-Villars, Paris, 1969.
![]() ![]() |
[13] |
P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM Control Optim. Calc. Var., 4 (1999), 419-444.
doi: 10.1051/cocv:1999116.![]() ![]() ![]() |
[14] |
K. Nishihara and Y. Yamada, On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, Funkcial. Ekvac., 33 (1990), 151-159.
![]() ![]() |
[15] |
K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl., 216 (1997), 321-342.
doi: 10.1006/jmaa.1997.5697.![]() ![]() ![]() |
[16] |
L. Tebou, Stabilization of some coupled hyperbolic/parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1601-1620.
doi: 10.3934/dcdsb.2010.14.1601.![]() ![]() ![]() |
[17] |
P. Villaggio, Mathematical Models for Elastic Structures, Cambridge Univ. Press, 1997.
doi: 10.1017/CBO9780511529665.![]() ![]() ![]() |