Article Contents
Article Contents

# Well-posedness and direct internal stability of coupled non-degenrate Kirchhoff system via heat conduction

• In the paper under study, we consider the following coupled non-degenerate Kirchhoff system

\left \{ \begin{aligned} & y_{tt}-\mathtt{φ}\Big(\int_\Omega | \nabla y |^2\,dx\Big)\Delta y +\mathtt{α} \Delta \mathtt{θ} = 0, &{\rm{ in }}&\; \Omega \times (0, +\infty)\\ & \mathtt{θ}_t-\Delta \mathtt{θ}-\mathtt{β} \Delta y_t = 0, &{\rm{ in }}&\; \Omega \times (0, +\infty)\\ & y = \mathtt{θ} = 0,\; &{\rm{ on }}&\;\partial\Omega\times(0, +\infty)\\ & y(\cdot, 0) = y_0, \; y_t(\cdot, 0) = y_1,\;\mathtt{θ}(\cdot, 0) = \mathtt{θ}_0, \; \; &{\rm{ in }}&\; \Omega\\ \end{aligned} \right. \ \ \ \ \ \ \ \ \ \ \ \ \ (1)

where $\Omega$ is a bounded open subset of $\mathbb{R}^n$, $\mathtt{α}$ and $\mathtt{β}$ be two nonzero real numbers with the same sign and $\mathtt{φ}$ is given by $\mathtt{φ}(s) = \mathfrak{m}_0+\mathfrak{m}_1s$ with some positive constants $\mathfrak{m}_0$ and $\mathfrak{m}_1$. So we prove existence of solution and establish its exponential decay. The method used is based on multiplier technique and some integral inequalities due to Haraux and Komornik[5,8].

Mathematics Subject Classification: Primary: 35B40, 35B45, 35L70.

 Citation:

•  [1] R. A. Adams, Sobolev Spaces, Academic press, Pure and Applied Mathematics, vol. 65, 1975. [2] P. Albano and D. Tataru, Carleman estimates and boundary observability for a coupled parabolic-hyperbolic system, Electron. J. Differential Equations, 2000 (2000), No. 22, 15 pp. [3] A. Benaissa and A. Guesmia, Global existence and general decay estimates of solutions for degenerate or non-degenerate Kirchhoff equation with general dissipation, J. Evol. Equation, 11 (2011), 1399-1424.  doi: 10.1007/s00028-010-0076-9. [4] B. Gilbert, A. Ben Aissa and S. Nicaise, Same decay rate of second order evolution equations with or without delay, Systems Control Lett., 141 (2020), 104700, 8 pp. doi: 10.1016/j.sysconle.2020.104700. [5] A. Haraux, Two remarks on dissipative hyperbolic problems, in Lions, J. L. and Brezis, H. (Eds): Nonlinear Partial Differential Equations and Their Applications, College de France Seminar Volume XVIII (Research Notes in Mathematics, Vol. 122), Pitman: Boston, MA, (1985), 161–179. [6] V. Keyantuo, L. Tebou and M. Warma, A gevrey class semigroup for a thermoelastic plate model with a fractional Laplacian: Between the Euler-Bernoulli and Kirchhoff models, Discrete Contin. Dyn. Syst., 40 (2020), 2875-2889.  doi: 10.3934/dcds.2020152. [7] G. Kirchhoff, Vorlesungen uber Mechanik, Teubner, Leipzig, 1897. [8] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson Wiley, Paris (1994). [9] I. Lasiecka, S. Maad and A. Sasane, Existence and exponential decay of solutions to a quasilinear thermoelastic plate system, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 689-715.  doi: 10.1007/s00030-008-0011-8. [10] I. Lasiecka, M. Pokojovy and X. Wan, Long-time behavior of quasilinear thermoelastic Kirchhoff/Love plates with second sound, Nonlinear Analysis, 186 (2019), 219-258.  doi: 10.1016/j.na.2019.02.019. [11] G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rational Mech. Anal., 141 (1998), 297–329. doi: 10.1007/s002050050078. [12] J.-L. Lions, Quelques Méthodes De Résolution Des Problémes Aux Limites Nonlinéaires, Dund Gautier-Villars, Paris, 1969. [13] P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM Control Optim. Calc. Var., 4 (1999), 419-444.  doi: 10.1051/cocv:1999116. [14] K. Nishihara and Y. Yamada, On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, Funkcial. Ekvac., 33 (1990), 151-159. [15] K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl., 216 (1997), 321-342.  doi: 10.1006/jmaa.1997.5697. [16] L. Tebou, Stabilization of some coupled hyperbolic/parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1601-1620.  doi: 10.3934/dcdsb.2010.14.1601. [17] P. Villaggio,  Mathematical Models for Elastic Structures, Cambridge Univ. Press, 1997.  doi: 10.1017/CBO9780511529665.