This work is concerned with a system of wave equations with variable-exponent nonlinearities acting in both equations. We, first, discuss the well-posedness then prove a blow up result for solutions with negative initial energy.
Citation: |
[1] |
K. Agre and M. A. Rammaha, Systems of nonlinear wave equations with damping and source terms, Differential Integral Equations, 19 (2006), 1235-1270.
![]() ![]() |
[2] |
S. Antontsev, Wave equation with $p(x, t)-$Laplacian and damping term: Existence and blow-up, Differ. Equ. Appl., 3 (2011), 503-525.
doi: 10.7153/dea-03-32.![]() ![]() ![]() |
[3] |
S. Antontsev, Wave equation with $p(x, t)-$Laplacian and damping term: Blow-up of solutions, Comptes Rendus Mecanique, 12 (2011), 751-755.
![]() |
[4] |
S. Antontsev and J. Ferreira, Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions, Nonlinear Anal., 93 (2013), 62-77.
doi: 10.1016/j.na.2013.07.019.![]() ![]() ![]() |
[5] |
S. Antontsev and S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up, Atlantis Studies in Differential Equations, Atlantis Press 2015.
doi: 10.2991/978-94-6239-112-3.![]() ![]() ![]() |
[6] |
S. Antontsev and S. Shmarev, Blow-up of solutions to parabolic equations with nonstandard growth conditions, J. Comput. Appl. Math., 234 (2010), 2633-2645.
doi: 10.1016/j.cam.2010.01.026.![]() ![]() ![]() |
[7] |
S. Antontsev and V. Zhikov, Higher integrability for parabolic equations of $p(x, t)$-Laplacian type, Adv. Differential Equations, 10 (2005), 1053-1080.
![]() ![]() |
[8] |
G. Autuori, P. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Rational Mech. Anal., 196 (2010), 489-516.
doi: 10.1007/s00205-009-0241-x.![]() ![]() ![]() |
[9] |
J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser. (2), 28 (1977), 473-486.
doi: 10.1093/qmath/28.4.473.![]() ![]() ![]() |
[10] |
O. Bouhoufani, Existence and Asymptotic Behavior of Solutions of Certain Hyperbolic Coupled Systems with Variable Exponents, PhD Thesis 2021, University of Batna 2, Algeria.
![]() |
[11] |
O. Bouhoufani and I. Hamchi, Coupled system of nonlinear hyperbolic equations with variable-exponents: Global existence and stability, Mediterr. J. Math., 18 (2021), Paper No. 98, 2 pp.
doi: 10.1007/s00009-020-01648-7.![]() ![]() ![]() |
[12] |
D. E. Edmunds and J. Rákosník, Sobolev embeddings with variable exponent, Studia Math., 143 (2000), 267-293.
doi: 10.4064/sm-143-3-267-293.![]() ![]() ![]() |
[13] |
D. E. Edmunds and J. Rákosník, Sobolev embeddings with variable exponent, Math. Nachr., 246/247 (2002), 53-67.
doi: 10.1002/1522-2616(200212)246:1<53::AID-MANA53>3.0.CO;2-T.![]() ![]() ![]() |
[14] |
X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.
doi: 10.1006/jmaa.2000.7617.![]() ![]() ![]() |
[15] |
Y. Gao and W. Gao, Existence of weak solutions for viscoelastic hyperbolic equations with variable exponents, Bound. Value Probl., 2013 (2013), 208, 8 pp.
doi: 10.1186/1687-2770-2013-208.![]() ![]() ![]() |
[16] |
V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source term, J. Differential Equations, 109 (1994), 295-308.
doi: 10.1006/jdeq.1994.1051.![]() ![]() ![]() |
[17] |
B. Guo and W. Gao, Blow-up of solutions to quasilinear hyperbolic equations with $p(x, t)-$Laplacian and positive initial energy, Comptes Rendus Mecanique, 342 (2014), 513-519.
![]() |
[18] |
X. Han and M. Wang, Global existence and blow-up of solutions for a system of nonlinear viscoelastic wave equations with damping and source terms, Nonlinear Anal., 71 (2009), 5427-5450.
doi: 10.1016/j.na.2009.04.031.![]() ![]() ![]() |
[19] |
A. Haraux and E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems, Arch. Rational Mech. Anal., 100 (1988), 191-206.
doi: 10.1007/BF00282203.![]() ![]() ![]() |
[20] |
M. Kafini and S. A. Messaoudi, A blow up result for a viscoelastic system in $\mathbb{R}^N$, Electron. J. Differential Equations, (2007), No. 113, 7 pp.
![]() ![]() |
[21] |
M. Kafini and S. A. Messaoudi, A blow up result in a Cauchy viscoelastic problem, Appl. Math. Lett., 21 (2008), 549-553.
doi: 10.1016/j.aml.2007.07.004.![]() ![]() ![]() |
[22] |
M. Kbiri Alaoui, S. A. Messaoudi and H. B. Khenous, A blow-up result for nonlinear generalized heat equation, Comput. Math. Appl., 68 (2014), 1723-1732.
doi: 10.1016/j.camwa.2014.10.018.![]() ![]() ![]() |
[23] |
M. Kopáčková, Remarks on bounded solutions of a semilinear dissipative hyperbolic equation, Comment. Math. Univ. Carolin., 30 (1989), 713-719.
![]() ![]() |
[24] |
M. O. Korpusov, Non-existence of global solutions to generalized dissipative Klein-Gordon equations with positive energy, Electron. J. Differential Equations, 2012 (2012), No. 119, 10 pp.
![]() ![]() |
[25] |
D. Lars, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev spaces with variable exponents, HBA Lect. Notes Math., 2017 (2011).
doi: 10.1007/978-3-642-18363-8.![]() ![]() ![]() |
[26] |
H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.
doi: 10.1137/0505015.![]() ![]() ![]() |
[27] |
H. A. Levine and J. Serrin, Global nonexistence theorems for quasilinear evolution equations with dissipation, Arch. Ration. Mech. Anal., 137 (1997), 341-361.
doi: 10.1007/s002050050032.![]() ![]() ![]() |
[28] |
S. A. Messaoudi, Blow up in a nonlinearly damped wave equation, Math. Nachr., 231 (2001), 105-111.
doi: 10.1002/1522-2616(200111)231:1<105::AID-MANA105>3.0.CO;2-I.![]() ![]() ![]() |
[29] |
S. A. Messaoudi, Blow up and global existence in nonlinear viscoelastic wave equations, Math. Nachr., 260 (2003), 58-66.
doi: 10.1002/mana.200310104.![]() ![]() ![]() |
[30] |
S. A. Messaoudi, Blow up of solutions with positive initial energy in a nonlinear viscoelastic wave equations, J. Math. Anal. Appl., 320 (2006), 902-915.
doi: 10.1016/j.jmaa.2005.07.022.![]() ![]() ![]() |
[31] |
S. A. Messaoudi and A. A. Talahmeh, A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities, Appl. Anal., 96 (2017), 1509-1515.
doi: 10.1080/00036811.2016.1276170.![]() ![]() ![]() |
[32] |
S. A. Messaoudi and A. A. Talahmeh, Blowup in solutions of a quasilinear wave equation with variable-exponent nonlinearities, Math. Methods Appl. Sci., 40 (2017), 6976-6986.
doi: 10.1002/mma.4505.![]() ![]() ![]() |
[33] |
S. A. Messaoudi, A. A. Talahmeh and J. H. Al-Smail, Nonlinear damped wave equation: Existence and blow-up, Comput. Math. Appl., 74 (2017), 3024-3041.
doi: 10.1016/j.camwa.2017.07.048.![]() ![]() ![]() |
[34] |
V. D. Rădulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Monogr. Res. Notes Math., CRC Press, 2015.
doi: 10.1201/b18601.![]() ![]() ![]() |
[35] |
B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Differential Integral Equations, 23 (2010), 79-92.
![]() ![]() |
[36] |
L. Sun, Y. Ren and W. Gao, Lower and upper bounds for the blow-up time for nonlinear wave equation with variable sources, Comput. Math. Appl., 71 (2016), 267-277.
doi: 10.1016/j.camwa.2015.11.016.![]() ![]() ![]() |
[37] |
E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Ration. Mech. Anal., 149 (1999), 155-182.
doi: 10.1007/s002050050171.![]() ![]() ![]() |
[38] |
Y. Wang, A global nonexistence theorem for viscoelastic equations with arbitrary positive initial energy, Appl. Math. Lett., 22 (2009), 1394-1400.
doi: 10.1016/j.aml.2009.01.052.![]() ![]() ![]() |