In this paper, the initial-boundary value problem for a class of fourth-order nonlinear parabolic equations modeling the epitaxial growth of thin films is studied. By means of the theory of potential wells, the global existence, asymptotic behavior and finite time blow-up of weak solutions are obtained.
Citation: |
[1] |
L. Agélas, Global regularity of solutions of equation modeling epitaxy thin film growth in $\mathbb{R}^d$, $d = 1, 2$, J. Evol. Equ., 15 (2015), 89-106.
doi: 10.1007/s00028-014-0250-6.![]() ![]() ![]() |
[2] |
D. Blömker and C. Gugg, On the existence of solutions for amorphous molecular beam epitaxy, Nonlinear Anal. Real World Appl., 3 (2002), 61-73.
doi: 10.1016/S1468-1218(01)00013-X.![]() ![]() ![]() |
[3] |
D. Blömker, C. Gugg and M. Raible, Thin-film-growth models: Roughness and correlation functions, Eur. J. Appl. Math., 13 (2002), 385-402.
doi: 10.1017/S0956792502004886.![]() ![]() ![]() |
[4] |
M. Capiński and D. Gatarek, Stochastic equations in Hilbert space with applications to Navier-Stokes equation in any dimensions, J. Functional Anal., 126 (1994), 26-35.
doi: 10.1006/jfan.1994.1140.![]() ![]() ![]() |
[5] |
H. Chen and H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.
doi: 10.3934/dcds.2019051.![]() ![]() ![]() |
[6] |
S. Das Sarma and S. V. Ghaisas, Solid-on-solid rules and models for nonequilibrium growth in $2+1$ dimensions, Phys. Rev. Lett., 69 (1992), 3762-3765.
![]() |
[7] |
M. Dimova, N. Kolkovska and N. Kutev, Global behavior of the solutions to nonlinear Klein-Gordon equation with critical initial energy, Elec. Res. Arch., 28 (2020), 671-689.
doi: 10.3934/era.2020035.![]() ![]() ![]() |
[8] |
J. A. Esquivel-Avila, Blow-up in damped abstract nonlinear equations, Elec. Res. Arch., 28 (2020), 347-367.
doi: 10.3934/era.2020020.![]() ![]() ![]() |
[9] |
J. M. Kim and S. Das Sarma, Discrete models for conserved growth equations, Phys. Rev. Lett., 72 (1994), 2903-2906.
doi: 10.1103/PhysRevLett.72.2903.![]() ![]() |
[10] |
B. B. King, O. Stein and M. Winkler, A fourth-order parabolic equation modeling epitaxial thin film growth, J. Math. Anal. Appl., 286 (2003), 459-490.
doi: 10.1016/S0022-247X(03)00474-8.![]() ![]() ![]() |
[11] |
R. V. Kohn and X. Yan, Upper bound on the coarsening rate for an epitaxial growth model, Comm. Pure Appl. Math., 56 (2003), 1549-1564.
doi: 10.1002/cpa.10103.![]() ![]() ![]() |
[12] |
W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613-632.
doi: 10.1515/anona-2020-0016.![]() ![]() ![]() |
[13] |
M. Liao, Q. Liu and H. Ye, Global existence and blow-up of weak solutions for a class of fractional $p$-Laplacian evolution equations, Adv. Nonlinear Anal., 9 (2020), 1569-1591.
doi: 10.1515/anona-2020-0066.![]() ![]() ![]() |
[14] |
J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.
![]() ![]() |
[15] |
W. Liu, Z. Chen and Z. Tu, New general decay result for a fourth-order Moore-Gibson-Thompson equation with memory, Elec. Res. Arch., 28 (2020), 433-457.
doi: 10.3934/era.2020025.![]() ![]() ![]() |
[16] |
Y. Liu, Long-time behavior of a class of viscoelastic plate equations, Elec. Res. Arch., 28 (2020), 311-326.
doi: 10.3934/era.2020018.![]() ![]() ![]() |
[17] |
Y. Liu and J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665-2687.
doi: 10.1016/j.na.2005.09.011.![]() ![]() ![]() |
[18] |
W. W. Mullins, Theory of thermal grooving, J. Appl. Phys., 28 (1957), 333-339.
doi: 10.1063/1.1722742.![]() ![]() |
[19] |
T. Niimura, Attractors and their stability with respect to rotational inertia for nonlocal extensible beam equations, Discrete Contin. Dyn. Syst., 40 (2020), 2561-2591.
doi: 10.3934/dcds.2020141.![]() ![]() ![]() |
[20] |
M. Ortiz, E. A. Repetto and H. Si, A continuum model of kinetic roughening and coarsening in thin films, J. Mech. Phys. Solids, 47 (1999), 697-730.
doi: 10.1016/S0022-5096(98)00102-1.![]() ![]() ![]() |
[21] |
L. E. Payne and D. H. Sattinger, Sadle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.
doi: 10.1007/BF02761595.![]() ![]() ![]() |
[22] |
T. P. Schulze and R. V. Kohn, A geometric model for coarsening during spiral-mode growth of thin films, Phys. D, 132 (1999), 520-542.
doi: 10.1016/S0167-2789(99)00108-6.![]() ![]() ![]() |
[23] |
O. Stein and M. Winkler, Amorphous molecular beam epitaxy: Global solutions and absorbing sets, Eur. J. Appl. Math., 16 (2005), 767-798.
doi: 10.1017/S0956792505006315.![]() ![]() ![]() |
[24] |
X. Wang and R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261-288.
doi: 10.1515/anona-2020-0141.![]() ![]() ![]() |
[25] |
M. Winkler, Global solutions in higher dimensions to a fourth order parabolic equation modeling epitaxial thin film growth, Z. Angew. Math. Phys., 62 (2011), 575-608.
doi: 10.1007/s00033-011-0128-1.![]() ![]() ![]() |
[26] |
R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.
doi: 10.1016/j.jfa.2013.03.010.![]() ![]() ![]() |
[27] |
R. Xu, M. Zhang, S. Chen, Y. Yang and J. Shen, The initial-boundary value problems for a class of six order nonlinear wave equation, Discrete Contin. Dyn. Syst., 37 (2017), 5631-5649.
doi: 10.3934/dcds.2017244.![]() ![]() ![]() |
[28] |
X.-G. Yang, M. J. D. Nascimento and M. L. Pelicer, Uniform attractors for non-autonomous plate equations with $p$-Laplacian perturbation and critical nonlinearities, Discrete Contin. Dyn. Syst., 40 (2020), 1937-1961.
doi: 10.3934/dcds.2020100.![]() ![]() ![]() |
[29] |
Z. Yang, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differential Equations, 187 (2003), 520-540.
![]() |
[30] |
A. Zangwill, Some causes and a consequence of epitaxial roughening, J. Crystal Growth, 163 (1996), 8-21.
doi: 10.1016/0022-0248(95)01048-3.![]() ![]() |
[31] |
M. Zhang and M. S. Ahmed, Sharp conditions of global existence for nonlinear Schrödinger equation with a harmonic potential, Adv. Nonlinear Anal., 9 (2020), 882-894.
doi: 10.1515/anona-2020-0031.![]() ![]() ![]() |
[32] |
X. Zhao and C. Liu, Time-periodic solution of a 2D fourth-order nonlinear parabolic equation, Proc. Indian Acad. Sci. (Math. Sci.), 124 (2014), 349-364.
doi: 10.1007/s12044-014-0180-9.![]() ![]() ![]() |