[1]
|
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, vol. 140 of Pure and Applied Mathematics (Amsterdam), 2nd edition, Elsevier/Academic Press, Amsterdam, 2003.
|
[2]
|
C. Alves, A. Moussaoui and L. Tavares, An elliptic system with logarithmic nonlinearity, Adv. Nonlinear Anal., 8 (2019), 928-945.
doi: 10.1515/anona-2017-0200.
|
[3]
|
L. J. An, Loss of hyperbolicity in elastic-plastic material at finite strains, SIAM J. Appl. Math., 53 (1993), 621-654.
doi: 10.1137/0153032.
|
[4]
|
L. J. An and A. Peirce, The effect of microstructure on elastic-plastic models, SIAM J. Appl. Math., 54 (1994), 708-730.
doi: 10.1137/S0036139992238498.
|
[5]
|
L. J. An and A. Peirce, A weakly nonlinear analysis of elastoplastic-microstructure models, SIAM J. Appl. Math., 55 (1995), 136-155.
doi: 10.1137/S0036139993255327.
|
[6]
|
G. Andrews, On the existence of solutions to the equation $u_tt = u_xxt+\sigma (u_{x})_{x}$, J. Differential Equations, 35 (1980), 200-231.
doi: 10.1016/0022-0396(80)90040-6.
|
[7]
|
F. P. Bretherton, Resonant interactions between waves. The case of discrete oscillations, J. Fluid Mech., 20 (1964), 457-479.
doi: 10.1017/S0022112064001355.
|
[8]
|
E. Brué and Q.-H. Nguyen, On the Sobolev space of functions with derivative of logarithmic order, Adv. Nonlinear Anal., 9 (2020), 836-849.
doi: 10.1515/anona-2020-0027.
|
[9]
|
P. Bugiel, S. A. Wedrychowicz and B. Rzepka, Fixed point of some Markov operator of Frobenius-Perron type generated by a random family of point-transformations in $\Bbb R^d$, Adv. Nonlinear Anal., 10 (2021), 972-981.
doi: 10.1515/anona-2020-0163.
|
[10]
|
H. Buljan, A. Šiber, M. Soljačić, T. Schwartz, M. Segev and D. N. Christodoulides, Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev. E (3), 68 (2003), 036607, 6 pp.
doi: 10.1103/PhysRevE.68.036607.
|
[11]
|
H. Chen and H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.
doi: 10.3934/dcds.2019051.
|
[12]
|
Y. Chen and R. Xu, Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal., 192 (2020), 111664, 39 pp.
doi: 10.1016/j.na.2019.111664.
|
[13]
|
I. Chueshov and I. Lasiecka, Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 15 (2006), 777-809.
doi: 10.3934/dcds.2006.15.777.
|
[14]
|
I. Chueshov and I. Lasiecka, On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity, Comm. Partial Differential Equations, 36 (2011), 67-99.
doi: 10.1080/03605302.2010.484472.
|
[15]
|
L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 493-516.
doi: 10.1016/S0294-1449(98)80032-2.
|
[16]
|
S. De Martino, M. Falanga, C. Godano and G. Lauro, Logarithmic Schrödinger-like equation as a model for magma transport, EPL, 63 (2003), 472-475.
doi: 10.1209/epl/i2003-00547-6.
|
[17]
|
H. Di, Y. Shang and J. Yu, Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source, Electron. Res. Arch., 28 (2020), 221-261.
doi: 10.3934/era.2020015.
|
[18]
|
Z. Ding, Traveling waves in a suspension bridge system, SIAM J. Math. Anal., 35 (2003), 160-171.
doi: 10.1137/S0036141002412690.
|
[19]
|
L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), 1061-1083.
doi: 10.2307/2373688.
|
[20]
|
W. He, D. Qin and Q. Wu, Existence, multiplicity and nonexistence results for Kirchhoff type equations, Adv. Nonlinear Anal., 10 (2021), 616-635.
doi: 10.1515/anona-2020-0154.
|
[21]
|
A. C. Lazer and P. J. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 243-274.
doi: 10.1016/S0294-1449(16)30368-7.
|
[22]
|
G. Li, Y. Chen and Y. Huang, A hybridized weak Galerkin finite element scheme for general second-order elliptic problems, Electron. Res. Arch., 28 (2020), 821-836.
doi: 10.3934/era.2020042.
|
[23]
|
W. Lian, M. S. Ahmed and R. Xu, Global existence and blow up of solution for semi-linear hyperbolic equation with the product of logarithmic and power-type nonlinearity, Opuscula Math., 40 (2020), 111-130.
doi: 10.7494/OpMath.2020.40.1.111.
|
[24]
|
W. Lian, V. D. Rădulescu, R. Xu, Y. Yang and N. Zhao, Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var., 14 (2021), 589-611.
doi: 10.1515/acv-2019-0039.
|
[25]
|
W. Lian, J. Wang and R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differential Equations, 269 (2020), 4914-4959.
doi: 10.1016/j.jde.2020.03.047.
|
[26]
|
W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613-632.
doi: 10.1515/anona-2020-0016.
|
[27]
|
E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/014.
|
[28]
|
Q. Lin, X. Tian, R. Xu and M. Zhang, Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 2095-2107.
doi: 10.3934/dcdss.2020160.
|
[29]
|
A. Linde, Strings, textures, inflation and spectrum bending, Phys. Lett. B, 284 (1992), 215-222.
doi: 10.1016/0370-2693(92)90423-2.
|
[30]
|
X. Liu and J. Zhou, Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity, Electron. Res. Arch., 28 (2020), 599-625.
doi: 10.3934/era.2020032.
|
[31]
|
Y. Liu and R. Xu, Fourth order wave equations with nonlinear strain and source terms, J. Math. Anal. Appl., 331 (2007), 585-607.
doi: 10.1016/j.jmaa.2006.09.010.
|
[32]
|
P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rational Mech. Anal., 98 (1987), 167-177.
doi: 10.1007/BF00251232.
|
[33]
|
R. L. Pego, Phase transitions in one-dimensional nonlinear viscoelasticity: Admissibility and stability, Arch. Rational Mech. Anal., 97 (1987), 353-394.
doi: 10.1007/BF00280411.
|
[34]
|
J. Shen, Y. Yang, S. Chen and R. Xu, Finite time blow up of fourth-order wave equations with nonlinear strain and source terms at high energy level, Internat. J. Math., 24 (2013), 1350043, 8 pp.
doi: 10.1142/S0129167X13500432.
|
[35]
|
M.-P. Tran and T.-N. Nguyen, Pointwise gradient bounds for a class of very singular quasilinear elliptic equations, Discrete Contin. Dyn. Syst., 41 (2021), 4461-4476.
doi: 10.3934/dcds.2021043.
|
[36]
|
V. V. Varlamov, On the initial-boundary value problem for the damped Boussinesq equation, Discrete Contin. Dynam. Systems, 4 (1998), 431-444.
doi: 10.3934/dcds.1998.4.431.
|
[37]
|
X. Wang and R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261-288.
doi: 10.1515/anona-2020-0141.
|
[38]
|
Y. Wang and Y. Wang, On the initial-boundary problem for fourth order wave equations with damping, strain and source terms, J. Math. Anal. Appl., 405 (2013), 116-127.
doi: 10.1016/j.jmaa.2013.03.060.
|
[39]
|
R. Xu, W. Lian, X. Kong and Y. Yang, Fourth order wave equation with nonlinear strain and logarithmic nonlinearity, Appl. Numer. Math., 141 (2019), 185-205.
doi: 10.1016/j.apnum.2018.06.004.
|
[40]
|
R. Xu, W. Lian and Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321-356.
doi: 10.1007/s11425-017-9280-x.
|
[41]
|
R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.
doi: 10.1016/j.jfa.2013.03.010.
|
[42]
|
R. Xu, X. Wang, Y. Yang and S. Chen, Global solutions and finite time blow-up for fourth order nonlinear damped wave equation, J. Math. Phys., 59 (2018), 061503, 27 pp.
doi: 10.1063/1.5006728.
|
[43]
|
Y. Yang, M. Salik Ahmed, L. Qin and R. Xu, Global well-posedness of a class of fourth-order strongly damped nonlinear wave equations, Opuscula Math., 39 (2019), 297-313.
doi: 10.7494/OpMath.2019.39.2.297.
|
[44]
|
Y. Zeng and K. Zhao, On the logarithmic Keller-Segel-Fisher/KPP system, Discrete Contin. Dyn. Syst., 39 (2019), 5365-5402.
doi: 10.3934/dcds.2019220.
|
[45]
|
M. Zhang, Q. Zhao, Y. Liu and W. Li, Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition, Electron. Res. Arch., 28 (2020), 369-381.
doi: 10.3934/era.2020021.
|