• Previous Article
    A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay
  • DCDS-S Home
  • This Issue
  • Next Article
    Asymptotic spreading for Fisher-KPP reaction-diffusion equations with heterogeneous shifting diffusivity
doi: 10.3934/dcdss.2021117
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A new approach based on inventory control using interval differential equation with application to manufacturing system

1. 

Department of Mathematics, The University of Burdwan, Burdwan-713104, India

2. 

Institute of IR 4.0, The National University of Malaysia, 43600 Bangi, Malaysia

3. 

Department of Mathematics, Near East University, Nicosia, TRNC, Mersin 10, Turkey

4. 

Faculty of Engineering, Bahcesehir Universiti, Istanbul, Turkey

*Corresponding author: Soheil Salahshour (soheil.salahshour@eng.bau.edu.tr)

Received  October 2020 Revised  June 2021 Early access November 2021

Now-a-days, uncertainty conditions play an important role in modelling of real-world problems. In this regard, the aim of this study is two folded. Firstly, the concept of system of interval differential equations and its solution procedure in the parametric approach have been proposed. To serve this purpose, using parametric representation of interval and its arithmetic, system of linear interval differential equations is converted to the system of differential equations in parametric form. Then, a mixing problem with three liquids is considered and the mixing process is governed by system of interval differential equations. Thereafter, the mixing liquid is used in the production process of a manufacturing firm. Secondly, using this concept, a production inventory model for single item has been developed by employing mixture of liquids and the proposed production system is formulated mathematically by using system of interval differential equations.The corresponding interval valued average profit of the proposed model has been obtained in parametric form and it is maximized by centre-radius optimization technique. Then to validate the proposed model, two numerical examples have been solved using MATHEMATICA software. In addition, we have shown the concavity of the objective function graphically using the code of 3D plot in MATHEMATICA. Finally, the post optimality analyses are carried out with respect to different system parameters.

Citation: Md Sadikur Rahman, Subhajit Das, Amalesh Kumar Manna, Ali Akbar Shaikh, Asoke Kumar Bhunia, Ali Ahmadian, Soheil Salahshour. A new approach based on inventory control using interval differential equation with application to manufacturing system. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021117
References:
[1]

F. J. AgocsW. J. HandleyA. N. Lasenby and M. P. Hobson, Efficient method for solving highly oscillatory ordinary differential equations with applications to physical systems, Physical Review Research, 2 (2020), 013030.   Google Scholar

[2]

N. Ahmady, A numerical method for solving fuzzy differential equations with fractional order, International Journal of Industrial Mathematics, 11 (2019), 71-77.   Google Scholar

[3]

L. Arnold, Stochastic Differential Equations, New York, 1974.  Google Scholar

[4]

B. BedeI. J. Rudas and A. L. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Information Sciences, 177 (2007), 1648-1662.  doi: 10.1016/j.ins.2006.08.021.  Google Scholar

[5]

A. R. Bergstrom, Non recursive models as discrete approximations to systems of stochastic differential equations, Econometrica: Journal of the Econometric Society, (1966), 173–182. doi: 10.2307/1909861.  Google Scholar

[6]

A. K. Bhunia and S. S. Samanta, A study of interval metric and its application in multi-objective optimization with interval objectives, Computers & Industrial Engineering, 74 (2014), 169-178.   Google Scholar

[7]

J. J. Buckley and T. Feuring, Fuzzy differential equations, Fuzzy Sets and Systems, 110 (2000), 43-54.  doi: 10.1016/S0165-0114(98)00141-9.  Google Scholar

[8]

C. Chicone, Ordinary Differential Equations with Applications, 34, Springer Science & Business Media, 2006.  Google Scholar

[9]

D. P. Covei and T. A. Pirvu, An elliptic partial differential equation and its application, Applied Mathematics Letters, 101 (2020), 106059.  doi: 10.1016/j.aml.2019.106059.  Google Scholar

[10]

S. Cui and A. Friedman, A free boundary problem for a singular system of differential equations: An application to a model of tumour growth, Transactions of the American Mathematical Society, 355 (2003), 3537-3590.  doi: 10.1090/S0002-9947-03-03137-4.  Google Scholar

[11] L. M. B. da Costa Campos, Non-linear differential equations and dynamical systems, CRC Press, 2019.   Google Scholar
[12]

T. M. da CostaY. Chalco-CanoW. A. Lodwick and G. N. Silva, A new approach to linear interval differential equations as a first step toward solving fuzzy differential, Fuzzy Sets and Systems, 347 (2018), 129-141.  doi: 10.1016/j.fss.2017.10.008.  Google Scholar

[13]

B. DasN. K. Mahapatra and M. Maiti, Initial-valued first order fuzzy differential equation in Bi-level inventory model with fuzzy demand, Mathematical Modelling and Analysis, 13 (2008), 493-512.  doi: 10.3846/1392-6292.2008.13.493-512.  Google Scholar

[14]

S. DasM. A. A. KhanE. E. MahmoudA. H. Abdel-AtyK. M. Abualnaja and A. A. Shaikh, A production inventory model with partial trade credit policy and reliability, Alexandria Engineering Journal, 60 (2021), 1325-1338.   Google Scholar

[15]

S. Das, A. K. Manna, E. E. Mahmoud, K. M. Abualnaja, A. H. Abdel-Aty and A. A. Shaikh, Product replacement policy in a production inventory model with replacement period-, stock-, and price-dependent demand, Journal of Mathematics, (2020). doi: 10.1155/2020/6697279.  Google Scholar

[16]

M. DeB. Das and M. Maiti, EPL models with fuzzy imperfect production system including carbon emission: A fuzzy differential equation approach, Soft Computing, 24 (2020), 1293-1313.   Google Scholar

[17]

K. EngelborghsV. LemaireJ. Belair and D. Roose, Numerical bifurcation analysis of delay differential equations arising from physiological modeling, Journal of Mathematical Biology, 42 (2001), 361-385.  doi: 10.1007/s002850000072.  Google Scholar

[18]

N. A. Gasilov and S. E. Amrahov, Solving a nonhomogeneous linear system of interval differential equations, Soft Computing, 22 (2018), 3817-3828.   Google Scholar

[19]

N. A. Gasilov and S. E. Amrahov, On differential equations with interval coefficients, Mathematical Methods in the Applied Sciences, 43 (2020), 1825-1837.  doi: 10.1002/mma.6006.  Google Scholar

[20]

B. GhanbariH. Günerhan and H. M. Srivastava, An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model, Chaos, Solitons & Fractals, 138 (2020), 109910.  doi: 10.1016/j.chaos.2020.109910.  Google Scholar

[21]

T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Annals of Mathematics, (1919), 292–296. doi: 10.2307/1967124.  Google Scholar

[22]

P. GuchhaitM. K. Maiti and M. Maiti, A production inventory model with fuzzy production and demand using fuzzy differential equation: An interval compared genetic algorithm approach, Engineering Applications of Artificial Intelligence, 26 (2013), 766-778.  doi: 10.1142/S0218488514500457.  Google Scholar

[23]

N. Ikeda and S. Watanabe, A comparison theorem for solutions of stochastic differential equations and its applications, Osaka Journal of Mathematics, 14 (1977), 619-633.   Google Scholar

[24]

R. JafariW. Yu and X. Li, Fuzzy differential equations for nonlinear system modelling with Bernstein neural networks, Ieee Access, 4 (2016), 9428-9436.   Google Scholar

[25]

H. T. Kanekiyo and S. Agata, Optimal control in an inventory management problem considering replenishment lead time based upon a non-diffusive stochastic differential equation, Journal of Advanced Mechanical Design, Systems, and Manufacturing, 13 (2019), JAMDSM0008-JAMDSM0008. Google Scholar

[26]

D. KumarA. R. Seadawy and A. K. Joardar, Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology, Chinese journal of physics, 56 (2018), 75-85.   Google Scholar

[27]

H. Liao and L. Li, Environmental sustainability EOQ model for closed-loop supply chain under market uncertainty: A case study of printer remanufacturing, Computers & Industrial Engineering, (2020), 106525. Google Scholar

[28]

W. LiuM. RocknerX. Sun and Y. Xie, Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients, Journal of Differential Equations, 268 (2020), 2910-2948.  doi: 10.1016/j.jde.2019.09.047.  Google Scholar

[29]

A. Mahata, S. P. Mondal, B. Roy and S. Alam, Study of two species prey-predator model in imprecise environment with MSY policy under different harvesting scenario, Environment, Development and Sustainability, (2021), 1–25. Google Scholar

[30] X. Mao and C. Yuan, Stochastic differential equations with Markovian switching, Imperial college press, 2006.  doi: 10.1142/p473.  Google Scholar
[31]

W. Materi and D. S. Wishart, Computational systems biology in drug discovery and development: Methods and applications, Drug Discovery Today, 12 (2007), 295-303.   Google Scholar

[32]

J. E. MorenoM. A. SanchezO. MendozaA. Rodriguez-DiazO. CastilloP. Melin and J. R. Castro, Design of an interval type-2 fuzzy model with justifiable uncertainty, Information Sciences, 513 (2020), 206-221.   Google Scholar

[33]

A. M. Overstall, D. C. Woods and B. M. Parker, Bayesian optimal design for ordinary differential equation models with application in biological science, Journal of the American Statistical Association, (2020), 1–16. doi: 10.1080/01621459.2019.1617154.  Google Scholar

[34]

D. PalG. S. Mahapatra and G. P. Samanta, New approach for stability and bifurcation analysis on predator-prey harvesting model for interval biological parameters with time delays, Computational and Applied Mathematics, 37 (2018), 3145-3171.  doi: 10.1007/s40314-017-0504-3.  Google Scholar

[35]

P. Pandit and P. Singh, Fully Fuzzy Semi-linear Dynamical System Solved by Fuzzy Laplace Transform Under Modified Hukuhara Derivative, In Soft Computing for Problem Solving, Springer, Singapore, 2020,155–179. Google Scholar

[36]

M. S. RahmanA. K. MannaA. A. Shaikh and A. K. Bhunia, An application of interval differential equation on a production inventory model with interval-valued demand via center-radius optimization technique and particle swarm optimization, International Journal of Intelligent Systems, 35 (2020), 1280-1326.   Google Scholar

[37]

M. S. Rahman, A. Duary, A. A. Shaikh and A. K. Bhunia, An application of parametric approach for interval differential equation in inventory model for deteriorating items with selling-price-dependent demand, Neural Computing and Applications, (2020), 1–17.  Google Scholar

[38]

M. S. Rahman, A. A. Shaikh and A. K. Bhunia, On type-2 interval with interval mathematics and order relations: Its applications in inventory control, International Journal of Systems Science: Operations & Logistics, (2020), 1–13. Google Scholar

[39]

M. Ramezanzadeh, M. Heidari, O. Fard and A. Borzabadi, On the interval differential equation: Novel solution methodology, Advances in Difference Equations, (2015). doi: 10.1186/s13662-015-0671-8.  Google Scholar

[40]

C. RoutD. Chakraborty and A. Goswami, An EPQ model for deteriorating items with imperfect production, two types of inspection errors and rework under complete backordering, International Game Theory Review, 22 (2020), 2040011.  doi: 10.1142/S0219198920400113.  Google Scholar

[41]

S. Salahshour, A. Ahmadian, S. Abbasbandy and D. Baleanu, M-fractional derivative under interval uncertainty: Theory, properties and applications, Chaos, Solitons and Fractals, (2018), 121–125. doi: 10.1016/j.chaos.2018.10.002.  Google Scholar

[42]

S. SalahshourA. AhmadianM. SalimiM. Ferarra and D. Baleanu, Asymptotic solutions of fractional interval differential equations with nonsingular kernel derivative, Chaos: An Interdisciplinary Journal of Nonlinear Science, AIP, 29 (2019), 083110.  doi: 10.1063/1.5096022.  Google Scholar

[43]

L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 1311-1328.  doi: 10.1016/j.na.2008.12.005.  Google Scholar

[44]

M. Thongmoon and S. Pusjuso, The numerical solutions of differential transform method and the Laplace transform method for a system of differential equations, Nonlinear Analysis: Hybrid Systems, 4 (2010), 425-431.  doi: 10.1016/j.nahs.2009.10.006.  Google Scholar

[45]

A. Tsoularis, A stochastic differential equation inventory model, International Journal of Applied and Computational Mathematics, 5 (2019), 8.  doi: 10.1007/s40819-018-0594-7.  Google Scholar

show all references

References:
[1]

F. J. AgocsW. J. HandleyA. N. Lasenby and M. P. Hobson, Efficient method for solving highly oscillatory ordinary differential equations with applications to physical systems, Physical Review Research, 2 (2020), 013030.   Google Scholar

[2]

N. Ahmady, A numerical method for solving fuzzy differential equations with fractional order, International Journal of Industrial Mathematics, 11 (2019), 71-77.   Google Scholar

[3]

L. Arnold, Stochastic Differential Equations, New York, 1974.  Google Scholar

[4]

B. BedeI. J. Rudas and A. L. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Information Sciences, 177 (2007), 1648-1662.  doi: 10.1016/j.ins.2006.08.021.  Google Scholar

[5]

A. R. Bergstrom, Non recursive models as discrete approximations to systems of stochastic differential equations, Econometrica: Journal of the Econometric Society, (1966), 173–182. doi: 10.2307/1909861.  Google Scholar

[6]

A. K. Bhunia and S. S. Samanta, A study of interval metric and its application in multi-objective optimization with interval objectives, Computers & Industrial Engineering, 74 (2014), 169-178.   Google Scholar

[7]

J. J. Buckley and T. Feuring, Fuzzy differential equations, Fuzzy Sets and Systems, 110 (2000), 43-54.  doi: 10.1016/S0165-0114(98)00141-9.  Google Scholar

[8]

C. Chicone, Ordinary Differential Equations with Applications, 34, Springer Science & Business Media, 2006.  Google Scholar

[9]

D. P. Covei and T. A. Pirvu, An elliptic partial differential equation and its application, Applied Mathematics Letters, 101 (2020), 106059.  doi: 10.1016/j.aml.2019.106059.  Google Scholar

[10]

S. Cui and A. Friedman, A free boundary problem for a singular system of differential equations: An application to a model of tumour growth, Transactions of the American Mathematical Society, 355 (2003), 3537-3590.  doi: 10.1090/S0002-9947-03-03137-4.  Google Scholar

[11] L. M. B. da Costa Campos, Non-linear differential equations and dynamical systems, CRC Press, 2019.   Google Scholar
[12]

T. M. da CostaY. Chalco-CanoW. A. Lodwick and G. N. Silva, A new approach to linear interval differential equations as a first step toward solving fuzzy differential, Fuzzy Sets and Systems, 347 (2018), 129-141.  doi: 10.1016/j.fss.2017.10.008.  Google Scholar

[13]

B. DasN. K. Mahapatra and M. Maiti, Initial-valued first order fuzzy differential equation in Bi-level inventory model with fuzzy demand, Mathematical Modelling and Analysis, 13 (2008), 493-512.  doi: 10.3846/1392-6292.2008.13.493-512.  Google Scholar

[14]

S. DasM. A. A. KhanE. E. MahmoudA. H. Abdel-AtyK. M. Abualnaja and A. A. Shaikh, A production inventory model with partial trade credit policy and reliability, Alexandria Engineering Journal, 60 (2021), 1325-1338.   Google Scholar

[15]

S. Das, A. K. Manna, E. E. Mahmoud, K. M. Abualnaja, A. H. Abdel-Aty and A. A. Shaikh, Product replacement policy in a production inventory model with replacement period-, stock-, and price-dependent demand, Journal of Mathematics, (2020). doi: 10.1155/2020/6697279.  Google Scholar

[16]

M. DeB. Das and M. Maiti, EPL models with fuzzy imperfect production system including carbon emission: A fuzzy differential equation approach, Soft Computing, 24 (2020), 1293-1313.   Google Scholar

[17]

K. EngelborghsV. LemaireJ. Belair and D. Roose, Numerical bifurcation analysis of delay differential equations arising from physiological modeling, Journal of Mathematical Biology, 42 (2001), 361-385.  doi: 10.1007/s002850000072.  Google Scholar

[18]

N. A. Gasilov and S. E. Amrahov, Solving a nonhomogeneous linear system of interval differential equations, Soft Computing, 22 (2018), 3817-3828.   Google Scholar

[19]

N. A. Gasilov and S. E. Amrahov, On differential equations with interval coefficients, Mathematical Methods in the Applied Sciences, 43 (2020), 1825-1837.  doi: 10.1002/mma.6006.  Google Scholar

[20]

B. GhanbariH. Günerhan and H. M. Srivastava, An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model, Chaos, Solitons & Fractals, 138 (2020), 109910.  doi: 10.1016/j.chaos.2020.109910.  Google Scholar

[21]

T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Annals of Mathematics, (1919), 292–296. doi: 10.2307/1967124.  Google Scholar

[22]

P. GuchhaitM. K. Maiti and M. Maiti, A production inventory model with fuzzy production and demand using fuzzy differential equation: An interval compared genetic algorithm approach, Engineering Applications of Artificial Intelligence, 26 (2013), 766-778.  doi: 10.1142/S0218488514500457.  Google Scholar

[23]

N. Ikeda and S. Watanabe, A comparison theorem for solutions of stochastic differential equations and its applications, Osaka Journal of Mathematics, 14 (1977), 619-633.   Google Scholar

[24]

R. JafariW. Yu and X. Li, Fuzzy differential equations for nonlinear system modelling with Bernstein neural networks, Ieee Access, 4 (2016), 9428-9436.   Google Scholar

[25]

H. T. Kanekiyo and S. Agata, Optimal control in an inventory management problem considering replenishment lead time based upon a non-diffusive stochastic differential equation, Journal of Advanced Mechanical Design, Systems, and Manufacturing, 13 (2019), JAMDSM0008-JAMDSM0008. Google Scholar

[26]

D. KumarA. R. Seadawy and A. K. Joardar, Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology, Chinese journal of physics, 56 (2018), 75-85.   Google Scholar

[27]

H. Liao and L. Li, Environmental sustainability EOQ model for closed-loop supply chain under market uncertainty: A case study of printer remanufacturing, Computers & Industrial Engineering, (2020), 106525. Google Scholar

[28]

W. LiuM. RocknerX. Sun and Y. Xie, Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients, Journal of Differential Equations, 268 (2020), 2910-2948.  doi: 10.1016/j.jde.2019.09.047.  Google Scholar

[29]

A. Mahata, S. P. Mondal, B. Roy and S. Alam, Study of two species prey-predator model in imprecise environment with MSY policy under different harvesting scenario, Environment, Development and Sustainability, (2021), 1–25. Google Scholar

[30] X. Mao and C. Yuan, Stochastic differential equations with Markovian switching, Imperial college press, 2006.  doi: 10.1142/p473.  Google Scholar
[31]

W. Materi and D. S. Wishart, Computational systems biology in drug discovery and development: Methods and applications, Drug Discovery Today, 12 (2007), 295-303.   Google Scholar

[32]

J. E. MorenoM. A. SanchezO. MendozaA. Rodriguez-DiazO. CastilloP. Melin and J. R. Castro, Design of an interval type-2 fuzzy model with justifiable uncertainty, Information Sciences, 513 (2020), 206-221.   Google Scholar

[33]

A. M. Overstall, D. C. Woods and B. M. Parker, Bayesian optimal design for ordinary differential equation models with application in biological science, Journal of the American Statistical Association, (2020), 1–16. doi: 10.1080/01621459.2019.1617154.  Google Scholar

[34]

D. PalG. S. Mahapatra and G. P. Samanta, New approach for stability and bifurcation analysis on predator-prey harvesting model for interval biological parameters with time delays, Computational and Applied Mathematics, 37 (2018), 3145-3171.  doi: 10.1007/s40314-017-0504-3.  Google Scholar

[35]

P. Pandit and P. Singh, Fully Fuzzy Semi-linear Dynamical System Solved by Fuzzy Laplace Transform Under Modified Hukuhara Derivative, In Soft Computing for Problem Solving, Springer, Singapore, 2020,155–179. Google Scholar

[36]

M. S. RahmanA. K. MannaA. A. Shaikh and A. K. Bhunia, An application of interval differential equation on a production inventory model with interval-valued demand via center-radius optimization technique and particle swarm optimization, International Journal of Intelligent Systems, 35 (2020), 1280-1326.   Google Scholar

[37]

M. S. Rahman, A. Duary, A. A. Shaikh and A. K. Bhunia, An application of parametric approach for interval differential equation in inventory model for deteriorating items with selling-price-dependent demand, Neural Computing and Applications, (2020), 1–17.  Google Scholar

[38]

M. S. Rahman, A. A. Shaikh and A. K. Bhunia, On type-2 interval with interval mathematics and order relations: Its applications in inventory control, International Journal of Systems Science: Operations & Logistics, (2020), 1–13. Google Scholar

[39]

M. Ramezanzadeh, M. Heidari, O. Fard and A. Borzabadi, On the interval differential equation: Novel solution methodology, Advances in Difference Equations, (2015). doi: 10.1186/s13662-015-0671-8.  Google Scholar

[40]

C. RoutD. Chakraborty and A. Goswami, An EPQ model for deteriorating items with imperfect production, two types of inspection errors and rework under complete backordering, International Game Theory Review, 22 (2020), 2040011.  doi: 10.1142/S0219198920400113.  Google Scholar

[41]

S. Salahshour, A. Ahmadian, S. Abbasbandy and D. Baleanu, M-fractional derivative under interval uncertainty: Theory, properties and applications, Chaos, Solitons and Fractals, (2018), 121–125. doi: 10.1016/j.chaos.2018.10.002.  Google Scholar

[42]

S. SalahshourA. AhmadianM. SalimiM. Ferarra and D. Baleanu, Asymptotic solutions of fractional interval differential equations with nonsingular kernel derivative, Chaos: An Interdisciplinary Journal of Nonlinear Science, AIP, 29 (2019), 083110.  doi: 10.1063/1.5096022.  Google Scholar

[43]

L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 1311-1328.  doi: 10.1016/j.na.2008.12.005.  Google Scholar

[44]

M. Thongmoon and S. Pusjuso, The numerical solutions of differential transform method and the Laplace transform method for a system of differential equations, Nonlinear Analysis: Hybrid Systems, 4 (2010), 425-431.  doi: 10.1016/j.nahs.2009.10.006.  Google Scholar

[45]

A. Tsoularis, A stochastic differential equation inventory model, International Journal of Applied and Computational Mathematics, 5 (2019), 8.  doi: 10.1007/s40819-018-0594-7.  Google Scholar

Figure 1.  Representation of mixing procedure in production process
Figure 2.  Pictorial representation of Production rate for different values of '$ \eta $' for Example 2
Figure 3.  Pictorial representation of centre of interval-valued average profit for Example 2
Figure 4.  Pictorial representation of average profit for different values of '$ \eta $' for Example 2
Figure 5.  Lower and upper bounds of interval-valued average profit for Example 2
Figure 6.  Pictorial representation of average profit in crisp environment for Example 3
Figure 7.  Effect of $ [\underline{b}, \overline{b}] $ on optimal policy
Figure 8.  Effect of $ [\underline{\theta}, \overline{\theta}] $ on optimal policy
Figure 9.  Effect of $ [\underline{h}, \overline{h}] $ on optimal policy
Figure 10.  Effect of $ [\underline{C}_o, \overline{C}_o] $ on optimal policy
Figure 11.  Effect of $ [\underline{c}_p, \overline{c}_p] $ on optimal policy
Figure 12.  Effect of $ [\underline{a}, \overline{a}] $ on optimal policy
Table 1.  Some previous works on applications of differential equations
Reported Works Simultaneous /Single differential equations Nature of equations (Crisp/Fuzzy/Stochastic/Interval) Area of applications
Cui and Friedman (2003)[10] Simultaneous Crisp (ordinary) Mathematical biology
Das et al. (2008)[13] Single Fuzzy Inventory
Guchhait et al. (2013)[22] Single Fuzzy Production inventory
Jafari et al. (2016)[24] Simultaneous Fuzzy Mathematical biology
da Costa Campos (2019)[11] Simultaneous Crisp (ordinary) Dynamical System
Tsoularis (2019)[45] Single Stochastic Inventory
Kanekiyo and Agata (2019)[25] Single Stochastic Inventory
Overstall et al. (2020)[33] Simultaneous Crisp (ordinary) Bio Science
De et al. (2020)[16] Single Fuzzy Production inventory
Agocs et al. (2020)[1] Simultaneous Crisp (ordinary) Dynamical system
Rahman et al. (2020b)[37] Single Interval Inventory
Das et al. (2020)[15] Single Crisp (ordinary) Production inventory
This work Simultaneous Interval Production inventory
Reported Works Simultaneous /Single differential equations Nature of equations (Crisp/Fuzzy/Stochastic/Interval) Area of applications
Cui and Friedman (2003)[10] Simultaneous Crisp (ordinary) Mathematical biology
Das et al. (2008)[13] Single Fuzzy Inventory
Guchhait et al. (2013)[22] Single Fuzzy Production inventory
Jafari et al. (2016)[24] Simultaneous Fuzzy Mathematical biology
da Costa Campos (2019)[11] Simultaneous Crisp (ordinary) Dynamical System
Tsoularis (2019)[45] Single Stochastic Inventory
Kanekiyo and Agata (2019)[25] Single Stochastic Inventory
Overstall et al. (2020)[33] Simultaneous Crisp (ordinary) Bio Science
De et al. (2020)[16] Single Fuzzy Production inventory
Agocs et al. (2020)[1] Simultaneous Crisp (ordinary) Dynamical system
Rahman et al. (2020b)[37] Single Interval Inventory
Das et al. (2020)[15] Single Crisp (ordinary) Production inventory
This work Simultaneous Interval Production inventory
Table 2.  Optimal results of Example 2
Variable Optimal result
Production time ($ t_1 $) 1.743 year
Selling price ($ p $) $102.03/Lit.
Cycle length ($ T $) 1.865 year
Centre of the average profit ($ Z_c $) $7282.09/year
Interval valued average profit ($ [\underline{Z}, \overline{Z}] $) [$7168.11, $7397.71]/year
Variable Optimal result
Production time ($ t_1 $) 1.743 year
Selling price ($ p $) $102.03/Lit.
Cycle length ($ T $) 1.865 year
Centre of the average profit ($ Z_c $) $7282.09/year
Interval valued average profit ($ [\underline{Z}, \overline{Z}] $) [$7168.11, $7397.71]/year
Table 3.  Optimal average profit for different values of '$ \eta $' of Example 2
$ \eta $ Average profit ($ Z(\eta) $)
0.0 $ 7397.71
0.2 $ 7351.26
0.4 $ 7305.08
0.5 $ 7282.09
0.6 $ 7259.17
0.8 $ 7213.52
1.0 $ 7168.11
$ \eta $ Average profit ($ Z(\eta) $)
0.0 $ 7397.71
0.2 $ 7351.26
0.4 $ 7305.08
0.5 $ 7282.09
0.6 $ 7259.17
0.8 $ 7213.52
1.0 $ 7168.11
Table 4.  Optimal results of Example 3
Variable Optimal result
Production time ($ t_1 $) 1.746 year
Selling price ($ p $) $102.042/Lit.
Cycle length ($ T $) 1.868 year
Centre of the average profit ($ Z_c $) $ 7281.62/year
Interval valued average profit ($ [\underline{Z}, \overline{Z}] $) [$ 7281.62, $ 7281.62]/year
Variable Optimal result
Production time ($ t_1 $) 1.746 year
Selling price ($ p $) $102.042/Lit.
Cycle length ($ T $) 1.868 year
Centre of the average profit ($ Z_c $) $ 7281.62/year
Interval valued average profit ($ [\underline{Z}, \overline{Z}] $) [$ 7281.62, $ 7281.62]/year
[1]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[2]

Jahnabi Chakravarty, Ashiho Athikho, Manideepa Saha. Convergence of interval AOR method for linear interval equations. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021006

[3]

Hadda Hmili. Non topologically weakly mixing interval exchanges. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1079-1091. doi: 10.3934/dcds.2010.27.1079

[4]

Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883

[5]

Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35

[6]

Ye Yuan, Yan Ren, Xiaodong Liu, Jing Wang. Approach to image segmentation based on interval neutrosophic set. Numerical Algebra, Control & Optimization, 2020, 10 (1) : 1-11. doi: 10.3934/naco.2019028

[7]

Chenyin Wang, Yaodong Ni, Xiangfeng Yang. The inventory replenishment policy in an uncertain production-inventory-routing system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021196

[8]

Tayel Dabbous. Identification for systems governed by nonlinear interval differential equations. Journal of Industrial & Management Optimization, 2012, 8 (3) : 765-780. doi: 10.3934/jimo.2012.8.765

[9]

Song Wang. Numerical solution of an obstacle problem with interval coefficients. Numerical Algebra, Control & Optimization, 2020, 10 (1) : 23-38. doi: 10.3934/naco.2019030

[10]

Xiao Tang, Yingying Zeng, Weinian Zhang. Interval homeomorphic solutions of a functional equation of nonautonomous iterations. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6967-6984. doi: 10.3934/dcds.2020214

[11]

Oliver Butterley. An alternative approach to generalised BV and the application to expanding interval maps. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3355-3363. doi: 10.3934/dcds.2013.33.3355

[12]

Ata Allah Taleizadeh, Hadi Samimi, Biswajit Sarkar, Babak Mohammadi. Stochastic machine breakdown and discrete delivery in an imperfect inventory-production system. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1511-1535. doi: 10.3934/jimo.2017005

[13]

Jiang-Xia Nan, Deng-Feng Li. Linear programming technique for solving interval-valued constraint matrix games. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1059-1070. doi: 10.3934/jimo.2014.10.1059

[14]

Victor Zvyagin, Vladimir Orlov. On one problem of viscoelastic fluid dynamics with memory on an infinite time interval. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3855-3877. doi: 10.3934/dcdsb.2018114

[15]

Karine Adamy. Existence of solutions for a Boussinesq system on the half line and on a finite interval. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 25-49. doi: 10.3934/dcds.2011.29.25

[16]

Ling-Jun Wang. The dynamics of small amplitude solutions of the Swift-Hohenberg equation on a large interval. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1129-1156. doi: 10.3934/cpaa.2012.11.1129

[17]

Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations & Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014

[18]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[19]

Carlos Correia Ramos, Nuno Martins, Paulo R. Pinto. Escape dynamics for interval maps. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6241-6260. doi: 10.3934/dcds.2019272

[20]

Masoumeh Gharaei, Ale Jan Homburg. Random interval diffeomorphisms. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 241-272. doi: 10.3934/dcdss.2017012

[Back to Top]