Considered herein is the well-posedness and stability for the Cauchy problem of the fourth-order Schrödinger equation with nonlinear derivative term $ iu_{t}+\Delta^2 u-u\Delta|u|^2+\lambda|u|^pu = 0 $, where $ t\in\mathbb{R} $ and $ x\in \mathbb{R}^n $. First of all, for initial data $ \varphi(x)\in H^2(\mathbb{R}^{n}) $, we establish the local well-poseness and finite time blow-up criterion of the solutions, and give a rough estimate of blow-up time and blow-up rate. Secondly, under a smallness assumption on the initial value $ \varphi(x) $, we demonstrate the global well-posedness of the solutions by applying two different methods, and at the same time give the scattering behavior of the solutions. Finally, based on founded a priori estimates, we investigate the stability of solutions by the short-time and long-time perturbation theories, respectively.
Citation: |
[1] |
D. Bonheure, S. Cingolani and S. Secchi, Concentration phenomena for the Schrödinger-Poisson system in $\mathbb{R}^2$, Discret. Contin. Dyn. Syst. S., 14 (2021), 1631-1648.
doi: 10.3934/dcdss.2020447.![]() ![]() ![]() |
[2] |
L. Cai and F. Zhang, The Brezis-Nirenberg type double critical problem for a class of Schrödinger equations, Electron. Res. Arch., 29 (2021), 2475-2488.
doi: 10.3934/era.2020125.![]() ![]() ![]() |
[3] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, Courant Institute of Mathematical Sciences, American Mathematical Society, New York, 10 2003.
doi: 10.1090/cln/010.![]() ![]() ![]() |
[4] |
J. Chen and B. Guo, Blow up and strong instability result for a quasilinear Schrödinger equation, Appl. Math. Model., 33 (2009), 4192-4200.
doi: 10.1016/j.apm.2009.03.003.![]() ![]() ![]() |
[5] |
M. Colin, On the local well-possedness on quasilinear Schrödinger equations in arbitrary space dimension, Commun. Partial Differ. Equ., 27 (2002), 325-354.
doi: 10.1081/PDE-120002789.![]() ![]() ![]() |
[6] |
S. Cuccagna and M. Maeda, A Survey on asymptotic stability of ground states of nonlinear Schrödinger equations II, Discret. Contin. Dyn. Syst. S., 14 (2021), 1693-1716.
doi: 10.3934/dcdss.2020450.![]() ![]() ![]() |
[7] |
G. Dai, R. Tian and Z. Zhang, Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger Systems, Discret. Contin. Dyn. Syst. S., 12 (2019), 1905-1927.
doi: 10.3934/dcdss.2019125.![]() ![]() ![]() |
[8] |
V. D. Dinh, On blowup solutions to the focusing intercritical nonlinear fourth-order Schrödinger equation, J. Dyn. Differ. Equ., 31 (2019), 1793-1823.
doi: 10.1007/s10884-018-9690-y.![]() ![]() ![]() |
[9] |
G. Fibich, B. Ilan and G. Papanicolaou, Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., 62 (2002), 1437-1462.
doi: 10.1137/S0036139901387241.![]() ![]() ![]() |
[10] |
Y. Fukumoto and H. K. Moffatt, Motion and expansion of a viscous vortex ring. Part I. A higher-order asymptotic formula for the velocity, J. Fluid. Mech., 417 (2000), 1-45.
doi: 10.1017/S0022112000008995.![]() ![]() ![]() |
[11] |
J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 2 (1985), 309-327.
doi: 10.1016/S0294-1449(16)30399-7.![]() ![]() ![]() |
[12] |
B. Guo and B. Wang, The global Cauchy problem and scattering of solutions for nonlinear Schrödinger equations in $H^s$, Differ. Integral Equ., 15 (2002), 107-1083.
![]() ![]() |
[13] |
R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B., 37 (1980), 83-87.
doi: 10.1007/BF01325508.![]() ![]() ![]() |
[14] |
Z. Huo and Y. Jia, The Cauchy problem for the fourth-order nonlinear Schrödinger equation related to the vortex filament, J. Differ. Equ., 214 (2005), 1-35.
doi: 10.1016/j.jde.2004.09.005.![]() ![]() ![]() |
[15] |
V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations, Phys. Rev. E., 53 (1996), 1336-1339.
doi: 10.1103/PhysRevE.53.R1336.![]() ![]() |
[16] |
V. I. Karpman and A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Physica D., 144 (2000), 194-210.
doi: 10.1016/S0167-2789(00)00078-6.![]() ![]() ![]() |
[17] |
T. Kato, On nonlinear schrödinger eqautions, Ann. Inst. Henri Poincaré Phys. Théor., 46 (1987), 113-129.
![]() ![]() |
[18] |
W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2019), 613-632.
doi: 10.1515/anona-2020-0016.![]() ![]() ![]() |
[19] |
X. Liu and T. Zhang, $H^2$ blowup result for a Schrödinger equation with nonlinear source term, Electron. Res. Arch., 28 (2020), 777-794.
doi: 10.3934/era.2020039.![]() ![]() ![]() |
[20] |
C. Miao, H. Wu and J. Zhang, Scattering theory below energy for the cubic fourth-order Schrödinger equation, Math. Nachr., 288 (2015), 798-823.
doi: 10.1002/mana.201400012.![]() ![]() ![]() |
[21] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case, J. Differ. Equ., 246 (2009), 3715-3749.
doi: 10.1016/j.jde.2008.11.011.![]() ![]() ![]() |
[22] |
C. Miao and B. Zhang, Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations, Discret. Contin. Dyn. Syst. A., 17 (2007), 181-200.
doi: 10.3934/dcds.2007.17.181.![]() ![]() ![]() |
[23] |
B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., 4 (2007), 197-225.
doi: 10.4310/DPDE.2007.v4.n3.a1.![]() ![]() ![]() |
[24] |
B. Pausader, The cubic fourth-order Schrödinger equation, J. Funct. Anal., 256 (2009), 2473-2517.
doi: 10.1016/j.jfa.2008.11.009.![]() ![]() ![]() |
[25] |
J. Segata, Remark on well-posedness for the fourth order nonlinear Schrödinger type equation, Proc. Amer. Math. Soc., 132 (2004), 3559-3568.
doi: 10.1090/S0002-9939-04-07620-8.![]() ![]() ![]() |
[26] |
J. Shu and J. Zhang, Sharp condition of global existence for second-order derivative nonlinear Schrödinger equations in two space dimensions, J. Math. Anal. Appl., 326 (2007), 1001-1006.
doi: 10.1016/j.jmaa.2006.03.055.![]() ![]() ![]() |
[27] |
J. Simon, Compact sets in the space $L^{p}(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[28] |
K. H. Spatschek and S. G. Tagary, Nonlinear propagation of ion-cyclotron modes, Phys. Fluids, 20 (1977), 1505-1509.
doi: 10.1063/1.862049.![]() ![]() |
[29] |
R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of sollutions of wave equations, Duke Math. J., 44 (1972), 705-714.
doi: 10.1215/S0012-7094-77-04430-1.![]() ![]() ![]() |
[30] |
R.-Z. Xu and C. Xu, Nonlinear Schrödinger equation with combined power-type nonlinearities and harmonic potential, Appl. Math. Mech., 31 (2010), 521-528.
doi: 10.1007/s10483-010-0412-7.![]() ![]() ![]() |
[31] |
R. Xu and C. Xu, Sharp conditions of global existence for second-order derivative nonlinear Schrödinger equations with combined power-type nonlinearities, Z. Angew. Math. Mech., 93 (2013), 29-37.
doi: 10.1002/zamm.201200083.![]() ![]() ![]() |
[32] |
F. Yang, Z.-H. Ning and L. Chen, Exponential stability of the nonlinear Schrödinger equation with locally distributed damping on compact Riemannian manifold, Adv. Nonlinear Anal., 10 (2021), 569-583.
doi: 10.1515/anona-2020-0149.![]() ![]() ![]() |
[33] |
H. Ye and Y. Yu, The existence of normalized solutions for $L^2$-critical quasilinear Schrödinger equations, J. Math. Anal. Appl., 497 (2021), 124829.
doi: 10.1016/j.jmaa.2020.124839.![]() ![]() ![]() |
[34] |
M.Y. Yu and P. K. Shuhla, On the formation of upper-hybrid solitons, Plasma Phys., 19 (1977), 889-893.
doi: 10.1088/0032-1028/19/9/008.![]() ![]() |
[35] |
J. Zhang and J. Zheng, Energy critical fourth-order Schrödinger equations with subcritical perturbations, Nonlinear Anal. Theory Methods Appl., 73 (2010), 1004-1014.
doi: 10.1016/j.na.2010.04.027.![]() ![]() ![]() |
[36] |
M. Zhang and M. S. Ahmed, Sharp conditions of global existence for nonlinear Schrödinger equation with a harmonic potential, Adv. Nonlinear Anal., 9 (2020), 882-894.
doi: 10.1515/anona-2020-0031.![]() ![]() ![]() |
[37] |
S. Zhu, J. Zhang and H. Yang, Limiting profile of the blow-up solutions for the fourth-order nonlinear Schrödinger equation, Dyn. Partial Differ. Equ., 7 (2010), 187-205.
doi: 10.4310/DPDE.2010.v7.n2.a4.![]() ![]() ![]() |
[38] |
S. Zhu, J. Zhang and H. Yang, Biharmonic nonlinear Schrödinger equation and the profile decomposition, Nonlinear Anal. Theory Methods Appl., 74 (2011), 6244-6255.
doi: 10.1016/j.na.2011.06.004.![]() ![]() ![]() |