In this paper, we study axisymmetric homogeneous solutions of the Navier-Stokes equations in cone regions. In [James Serrin. The swirling vortex. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 271(1214):325-360, 1972.], Serrin studied the boundary value problem in half-space minus $ x_3 $-axis, and used it to model the dynamics of tornado. We extend Serrin's work to general cone regions minus $ x_3 $-axis. All axisymmetric homogeneous solutions of the boundary value problem have three possible patterns, which can be classified by two parameters. Some existence results are obtained as well.
Citation: |
[1] |
M. A. Gol'dshtik, A paradoxical solution of the Navier-Stokes equations, J. Appl. Math. Mech., 24 (1960), 913-929.
doi: 10.1016/0021-8928(60)90070-8.![]() ![]() |
[2] |
L. Landau, A new exact solution of Navier-Stokes equations, C. R. (Doklady) Acad. Sci. URSS (N.S.), 43 (1944), 286-288.
![]() ![]() |
[3] |
L. Li, Y. Li and X. Yan, Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. I. One singularity, Arch. Ration. Mech. Anal., 227 (2018), 1091-1163.
doi: 10.1007/s00205-017-1181-5.![]() ![]() ![]() |
[4] |
L. Li, Y. Li and X. Yan, Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. II. Classification of axisymmetric no-swirl solutions, J. Differential Equations, 264 (2018), 6082-6108.
doi: 10.1016/j.jde.2018.01.028.![]() ![]() ![]() |
[5] |
L. Li, Y. Li and X. Yan, Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. III. Two singularities, Discrete Contin. Dyn. Syst., 39 (2019), 7163-7211.
doi: 10.3934/dcds.2019300.![]() ![]() ![]() |
[6] |
Y. Li and X. Yan, Asymptotic stability of homogeneous solutions of incompressible stationary Navier-Stokes equations, J. Differential Equations, 297 (2021), 226-245.
doi: 10.1016/j.jde.2021.06.033.![]() ![]() ![]() |
[7] |
R. Paull and A. F. Pillow, Conically similar viscous flows. I. Basic conservation principles and characterization of axial causes in swirl-free flow, J. Fluid Mech., 155 (1985), 327-341.
doi: 10.1017/S0022112085001835.![]() ![]() ![]() |
[8] |
R. Paull and A. F. Pillow, Conically similar viscous flows. II. One-parameter swirl-free flows, J. Fluid Mech., 155 (1985), 343-358.
doi: 10.1017/S0022112085001847.![]() ![]() ![]() |
[9] |
R. Paull and A. F. Pillow, Conically similar viscous flows. III. Characterization of axial causes in swirling flow and the one-parameter flow generated by a uniform half-line source of kinematic swirl angular momentum, J. Fluid Mech., 155 (1985), 359-379.
doi: 10.1017/S0022112085001859.![]() ![]() ![]() |
[10] |
J. Serrin, The swirling vortex, Trans. Roy. Soy. London Ser. A, 271 (1972), 325-360.
doi: 10.1098/rsta.1972.0013.![]() ![]() |
[11] |
N. Slezkin, On an exact solution of the equations of viscous flow, Uch. Zap. MGU, 2 (1934), 89-90.
![]() |
[12] |
H. B. Squire, The round laminar jet, Quart. J. Mech. Appl. Math., 4 (1951), 321-329.
doi: 10.1093/qjmam/4.3.321.![]() ![]() ![]() |
[13] |
V. Šverák, On Landau's solutions of the Navier-Stokes equations. Problems in mathematical analysis, J. Math. Sci. (N.Y.), 179 (2011), 208-228.
doi: 10.1007/s10958-011-0590-5.![]() ![]() ![]() |
[14] |
G. Tian and Z. Xin, One-point singular solutions to the Navier-Stokes equations, Topol. Methods Nonlinear Anal., 11 (1998), 135-145.
doi: 10.12775/TMNA.1998.008.![]() ![]() ![]() |
[15] |
C. Y. Wang, Exact solutions of the steady-state Navier-Stokes equations, in Annual Review of Fluid Mechanics, Vol. 23, Annual Reviews, Palo Alto, CA, 1991,159–177.
doi: 10.1146/annurev.fl.23.010191.001111.![]() ![]() ![]() |
[16] |
V. I. Yatseyev, On a class of exact solutions of the equations of motion of a viscous fluid, NACA Tech. Memo., 1953 (1953), 7pp.
![]() ![]() |