doi: 10.3934/dcdss.2021128
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Minimum number of non-zero-entries in a stable matrix exhibiting Turing instability

1. 

Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA

2. 

Department of Mathematics, William & Mary, Williamsburg, VA 23187-8795, USA

* Corresponding author: Junping Shi

Received  March 2021 Revised  July 2021 Early access October 2021

Fund Project: Partially supported by NSF grants DMS-1331021, DMS-1853598, and Simons Foundation grant 351047

It is shown that for any positive integer $ n \ge 3 $, there is a stable irreducible $ n\times n $ matrix $ A $ with $ 2n+1-\lfloor\frac{n}{3}\rfloor $ nonzero entries exhibiting Turing instability. Moreover, when $ n = 3 $, the result is best possible, i.e., every $ 3\times 3 $ stable matrix with five or fewer nonzero entries will not exhibit Turing instability. Furthermore, we determine all possible $ 3\times 3 $ irreducible sign pattern matrices with 6 nonzero entries which can be realized by a matrix $ A $ that exhibits Turing instability.

Citation: Christopher Logan Hambric, Chi-Kwong Li, Diane Christine Pelejo, Junping Shi. Minimum number of non-zero-entries in a stable matrix exhibiting Turing instability. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021128
References:
[1]

A. AnmaK. Sakamoto and T. Yoneda, Unstable subsystems cause Turing instability, Kodai Math. J., 35 (2012), 215-247.  doi: 10.2996/kmj/1341401049.  Google Scholar

[2]

R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, vol. 39 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9781107325708.  Google Scholar

[3]

M. Cavers, Polynomial stability and potentially stable patterns, Linear Algebra Appl., 613 (2021), 87-114.  doi: 10.1016/j.laa.2020.12.015.  Google Scholar

[4]

X. DiegoL. MarconP. Müller and and J. Sharpe, Key features of Turing systems are determined purely by network topology, Physical Review X, 8 (2018), 021071.  doi: 10.1103/PhysRevX.8.021071.  Google Scholar

[5]

D. A. GrundyD. D. Olesky and P. van den Driessche, Constructions for potentially stable sign patterns, Linear Algebra Appl., 436 (2012), 4473-4488.  doi: 10.1016/j.laa.2011.08.011.  Google Scholar

[6]

C. L. HambricC.-K. LiD. C. Pelejo and J. Shi, Minimum number of non-zero-entries in a $7\times 7$ stable matrix, Linear Algebra Appl., 572 (2019), 135-152.  doi: 10.1016/j.laa.2019.03.002.  Google Scholar

[7]

C. R. JohnsonJ. S. MaybeeD. D. Olesky and P. van den Driessche, Nested sequences of principal minors and potential stability, Linear Algebra Appl., 262 (1997), 243-257.  doi: 10.1016/S0024-3795(97)80034-1.  Google Scholar

[8]

A. N. LandgeB. M. JordanX. Diego and P. Müller, Pattern formation mechanisms of self-organizing reaction-diffusion systems, Developmental Biology, 460 (2020), 2-11.  doi: 10.1016/j.ydbio.2019.10.031.  Google Scholar

[9]

A. Liénard and M. Chipart, Sur le signe de la partie réelle des racines dúne équation algébrique, J. Math. Pures Appl., 10 (1914), 291-346.   Google Scholar

[10]

P. K. MainiK. J. Painter and H. N. P. Chau, Spatial pattern formation in chemical and biological systems, Journal of the Chemical Society, Faraday Transactions, 93 (1997), 3601-3610.  doi: 10.1039/a702602a.  Google Scholar

[11]

L. Marcon, X. Diego, J. Sharpe and P. Müller, High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals, Elife, 5 (2016), e14022. doi: 10.7554/eLife.14022.  Google Scholar

[12]

J. Maybee and J. Quirk, Qualitative problems in matrix theory, SIAM Rev., 11 (1969), 30-51.  doi: 10.1137/1011004.  Google Scholar

[13]

M. Mincheva and M. R. Roussel, A graph-theoretic method for detecting potential Turing bifurcations, The Journal of Chemical Physics, 125 (2006), 204102.  doi: 10.1063/1.2397073.  Google Scholar

[14]

J. D. Murray, Mathematical Biology. II. Spatial Models and Biomedical Applications, vol. 18 of Interdisciplinary Applied Mathematics, 3rd edition, Springer-Verlag, New York, 2003. doi: 10.1007/b98869.  Google Scholar

[15]

J. RaspopovicL. MarconL. Russo and J. Sharpe, Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients, Science, 345 (2014), 566-570.  doi: 10.1126/science.1252960.  Google Scholar

[16]

R. A. SatnoianuM. Menzinger and P. K. Maini, Turing instabilities in general systems, J. Math. Biol., 41 (2000), 493-512.  doi: 10.1007/s002850000056.  Google Scholar

[17]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[18]

P. van den Driessche, Sign pattern matrices, in Combinatorial Matrix Theory, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, (2018), 47–82. doi: 10.1007/978-3-319-70953-6_2.  Google Scholar

[19]

L. Wang and M. Y. Li, Diffusion-driven instability in reaction-diffusion systems, J. Math. Anal. Appl., 254 (2001), 138-153.  doi: 10.1006/jmaa.2000.7220.  Google Scholar

[20]

K. A. J. White and C. A. Gilligan, Spatial heterogeneity in three species, plant–parasite–hyperparasite, systems, Philos. Trans. Roy. Soc. London Ser. B, 353 (1998), 543-557.  doi: 10.1098/rstb.1998.0226.  Google Scholar

show all references

References:
[1]

A. AnmaK. Sakamoto and T. Yoneda, Unstable subsystems cause Turing instability, Kodai Math. J., 35 (2012), 215-247.  doi: 10.2996/kmj/1341401049.  Google Scholar

[2]

R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, vol. 39 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9781107325708.  Google Scholar

[3]

M. Cavers, Polynomial stability and potentially stable patterns, Linear Algebra Appl., 613 (2021), 87-114.  doi: 10.1016/j.laa.2020.12.015.  Google Scholar

[4]

X. DiegoL. MarconP. Müller and and J. Sharpe, Key features of Turing systems are determined purely by network topology, Physical Review X, 8 (2018), 021071.  doi: 10.1103/PhysRevX.8.021071.  Google Scholar

[5]

D. A. GrundyD. D. Olesky and P. van den Driessche, Constructions for potentially stable sign patterns, Linear Algebra Appl., 436 (2012), 4473-4488.  doi: 10.1016/j.laa.2011.08.011.  Google Scholar

[6]

C. L. HambricC.-K. LiD. C. Pelejo and J. Shi, Minimum number of non-zero-entries in a $7\times 7$ stable matrix, Linear Algebra Appl., 572 (2019), 135-152.  doi: 10.1016/j.laa.2019.03.002.  Google Scholar

[7]

C. R. JohnsonJ. S. MaybeeD. D. Olesky and P. van den Driessche, Nested sequences of principal minors and potential stability, Linear Algebra Appl., 262 (1997), 243-257.  doi: 10.1016/S0024-3795(97)80034-1.  Google Scholar

[8]

A. N. LandgeB. M. JordanX. Diego and P. Müller, Pattern formation mechanisms of self-organizing reaction-diffusion systems, Developmental Biology, 460 (2020), 2-11.  doi: 10.1016/j.ydbio.2019.10.031.  Google Scholar

[9]

A. Liénard and M. Chipart, Sur le signe de la partie réelle des racines dúne équation algébrique, J. Math. Pures Appl., 10 (1914), 291-346.   Google Scholar

[10]

P. K. MainiK. J. Painter and H. N. P. Chau, Spatial pattern formation in chemical and biological systems, Journal of the Chemical Society, Faraday Transactions, 93 (1997), 3601-3610.  doi: 10.1039/a702602a.  Google Scholar

[11]

L. Marcon, X. Diego, J. Sharpe and P. Müller, High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals, Elife, 5 (2016), e14022. doi: 10.7554/eLife.14022.  Google Scholar

[12]

J. Maybee and J. Quirk, Qualitative problems in matrix theory, SIAM Rev., 11 (1969), 30-51.  doi: 10.1137/1011004.  Google Scholar

[13]

M. Mincheva and M. R. Roussel, A graph-theoretic method for detecting potential Turing bifurcations, The Journal of Chemical Physics, 125 (2006), 204102.  doi: 10.1063/1.2397073.  Google Scholar

[14]

J. D. Murray, Mathematical Biology. II. Spatial Models and Biomedical Applications, vol. 18 of Interdisciplinary Applied Mathematics, 3rd edition, Springer-Verlag, New York, 2003. doi: 10.1007/b98869.  Google Scholar

[15]

J. RaspopovicL. MarconL. Russo and J. Sharpe, Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients, Science, 345 (2014), 566-570.  doi: 10.1126/science.1252960.  Google Scholar

[16]

R. A. SatnoianuM. Menzinger and P. K. Maini, Turing instabilities in general systems, J. Math. Biol., 41 (2000), 493-512.  doi: 10.1007/s002850000056.  Google Scholar

[17]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[18]

P. van den Driessche, Sign pattern matrices, in Combinatorial Matrix Theory, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, (2018), 47–82. doi: 10.1007/978-3-319-70953-6_2.  Google Scholar

[19]

L. Wang and M. Y. Li, Diffusion-driven instability in reaction-diffusion systems, J. Math. Anal. Appl., 254 (2001), 138-153.  doi: 10.1006/jmaa.2000.7220.  Google Scholar

[20]

K. A. J. White and C. A. Gilligan, Spatial heterogeneity in three species, plant–parasite–hyperparasite, systems, Philos. Trans. Roy. Soc. London Ser. B, 353 (1998), 543-557.  doi: 10.1098/rstb.1998.0226.  Google Scholar

Table 1.  List of potential digraphs with $ 3 $ vertices and $ 5 $ edges
Table 2.  List of potential digraphs with 3 vertices and 6 edges
Table 3.  Nonequivalent sign patterns that are PETI (potentially exhibiting Turing Instability)
Table 4.   
Table 5.   
Table 6.   
[1]

Steffen Härting, Anna Marciniak-Czochra, Izumi Takagi. Stable patterns with jump discontinuity in systems with Turing instability and hysteresis. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 757-800. doi: 10.3934/dcds.2017032

[2]

Maya Mincheva, Gheorghe Craciun. Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1207-1226. doi: 10.3934/mbe.2013.10.1207

[3]

David Auger, Irène Charon, Iiro Honkala, Olivier Hudry, Antoine Lobstein. Edge number, minimum degree, maximum independent set, radius and diameter in twin-free graphs. Advances in Mathematics of Communications, 2009, 3 (1) : 97-114. doi: 10.3934/amc.2009.3.97

[4]

Romar dela Cruz, Michael Kiermaier, Sascha Kurz, Alfred Wassermann. On the minimum number of minimal codewords. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020130

[5]

Julijana Gjorgjieva, Jon Jacobsen. Turing patterns on growing spheres: the exponential case. Conference Publications, 2007, 2007 (Special) : 436-445. doi: 10.3934/proc.2007.2007.436

[6]

Regino Criado, Julio Flores, Alejandro J. García del Amo, Miguel Romance. Structural properties of the line-graphs associated to directed networks. Networks & Heterogeneous Media, 2012, 7 (3) : 373-384. doi: 10.3934/nhm.2012.7.373

[7]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[8]

Georg Hetzer, Anotida Madzvamuse, Wenxian Shen. Characterization of turing diffusion-driven instability on evolving domains. Discrete & Continuous Dynamical Systems, 2012, 32 (11) : 3975-4000. doi: 10.3934/dcds.2012.32.3975

[9]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4255-4281. doi: 10.3934/dcds.2021035

[10]

Dina Ghinelli, Jennifer D. Key. Codes from incidence matrices and line graphs of Paley graphs. Advances in Mathematics of Communications, 2011, 5 (1) : 93-108. doi: 10.3934/amc.2011.5.93

[11]

Jung-Chao Ban, Song-Sun Lin. Patterns generation and transition matrices in multi-dimensional lattice models. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 637-658. doi: 10.3934/dcds.2005.13.637

[12]

Bingru Zhang, Chuanye Gu, Jueyou Li. Distributed convex optimization with coupling constraints over time-varying directed graphs. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2119-2138. doi: 10.3934/jimo.2020061

[13]

Dean Crnković, Ronan Egan, Andrea Švob. Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs. Advances in Mathematics of Communications, 2020, 14 (4) : 591-602. doi: 10.3934/amc.2020032

[14]

Zhifu Xie. Turing instability in a coupled predator-prey model with different Holling type functional responses. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1621-1628. doi: 10.3934/dcdss.2011.4.1621

[15]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021085

[16]

Guido Schneider, Matthias Winter. The amplitude system for a Simultaneous short-wave Turing and long-wave Hopf instability. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021119

[17]

Jennifer D. Key, Washiela Fish, Eric Mwambene. Codes from the incidence matrices and line graphs of Hamming graphs $H^k(n,2)$ for $k \geq 2$. Advances in Mathematics of Communications, 2011, 5 (2) : 373-394. doi: 10.3934/amc.2011.5.373

[18]

Amelia Álvarez, José-Luis Bravo, Manuel Fernández. The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1493-1501. doi: 10.3934/cpaa.2009.8.1493

[19]

Takanori Ide, Kazuhiro Kurata, Kazunaga Tanaka. Multiple stable patterns for some reaction-diffusion equation in disrupted environments. Discrete & Continuous Dynamical Systems, 2006, 14 (1) : 93-116. doi: 10.3934/dcds.2006.14.93

[20]

Shin-Ichiro Ei, Kota Ikeda, Eiji Yanagida. Instability of multi-spot patterns in shadow systems of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 717-736. doi: 10.3934/cpaa.2015.14.717

2020 Impact Factor: 2.425

Article outline

Figures and Tables

[Back to Top]