Case (16) | A) |
B) |
C) |
D) |
(18) | ||||
(19) |
The aim of this paper is to give global nonexistence and blow–up results for the problem
$ \begin{cases} u_{tt}-\Delta u+P(x,u_t) = f(x,u) \qquad &\text{in $(0,\infty)\times\Omega$,}\\ u = 0 &\text{on $(0,\infty)\times \Gamma_0$,}\\ u_{tt}+\partial_\nu u-\Delta_\Gamma u+Q(x,u_t) = g(x,u)\qquad &\text{on $(0,\infty)\times \Gamma_1$,}\\ u(0,x) = u_0(x),\quad u_t(0,x) = u_1(x) & \text{in $\overline{\Omega}$,} \end{cases} $
where $ \Omega $ is a bounded open $ C^1 $ subset of $ {\mathbb R}^N $, $ N\ge 2 $, $ \Gamma = \partial\Omega $, $ (\Gamma_0,\Gamma_1) $ is a partition of $ \Gamma $, $ \Gamma_1\not = \emptyset $ being relatively open in $ \Gamma $, $ \Delta_\Gamma $ denotes the Laplace–Beltrami operator on $ \Gamma $, $ \nu $ is the outward normal to $ \Omega $, and the terms $ P $ and $ Q $ represent nonlinear damping terms, while $ f $ and $ g $ are nonlinear source terms. These results complement the analysis of the problem given by the author in two recent papers, dealing with local and global existence, uniqueness and well–posedness.
Citation: |
Table 1. (18) vs. (19) for the model classes A–D)
Case (16) | A) |
B) |
C) |
D) |
(18) | ||||
(19) |
Table 2. (14) vs. (22) for the model problems Ca–Cd)
|
||||
(14) | ||||
(22) |
Table 3. (14) vs (26) for the model problems Da–Dd)
(14) | ||||
(26) |
[1] |
R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
![]() ![]() |
[2] |
A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge University Press, Cambridge, 1993.
![]() ![]() |
[3] |
K. T. Andrews, K. L. Kuttler and M. Shillor, Second order evolution equations with dynamic boundary conditions, J. Math. Anal. Appl., 197 (1996), 781-795.
doi: 10.1006/jmaa.1996.0053.![]() ![]() ![]() |
[4] |
G. Autuori and P. Pucci, Kirchhoff systems with dynamic boundary conditions, Nonlinear Anal., 73 (2010), 1952-1965.
doi: 10.1016/j.na.2010.05.024.![]() ![]() ![]() |
[5] |
G. Autuori and P. Pucci, Kirchhoff systems with nonlinear source and boundary damping terms, Commun. Pure Appl. Anal., 9 (2010), 1161-1188.
doi: 10.3934/cpaa.2010.9.1161.![]() ![]() ![]() |
[6] |
G. Autuori, P. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.
doi: 10.1007/s00205-009-0241-x.![]() ![]() ![]() |
[7] |
J. T. Beale, Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J., 25 (1976), 895-917.
doi: 10.1512/iumj.1976.25.25071.![]() ![]() ![]() |
[8] |
J. Bergh and J. Lőfstrőm, Interpolations Spaces. An Introduction, Springer Verlag, Berlin, 1976.
![]() |
[9] |
L. Bociu, Local and global wellposedness of weak solutions for the wave equation with nonlinear boundary and interior sources of supercritical exponents and damping, Nonlinear Anal., 71 (2009), e560–e575.
doi: 10.1016/j.na.2008.11.062.![]() ![]() ![]() |
[10] |
L. Bociu and I. Lasiecka, Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping, Appl. Math. (Warsaw), 35 (2008), 281-304.
doi: 10.4064/am35-3-3.![]() ![]() ![]() |
[11] |
L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping, Discrete Contin. Dyn. Syst., 22 (2008), 835-860.
doi: 10.3934/dcds.2008.22.835.![]() ![]() ![]() |
[12] |
L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683.
doi: 10.1016/j.jde.2010.03.009.![]() ![]() ![]() |
[13] |
L. Bociu, M. Rammaha and D. Toundykov, On a wave equation with supercritical interior and boundary sources and damping terms, Math. Nachr., 284 (2011), 2032-2064.
doi: 10.1002/mana.200910182.![]() ![]() ![]() |
[14] |
H. Brezis, Functional Analysis, SObolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
![]() ![]() |
[15] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping–-source interaction, J. Differential Equations, 236 (2007), 407-459.
doi: 10.1016/j.jde.2007.02.004.![]() ![]() ![]() |
[16] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203 (2004), 119-158.
doi: 10.1016/j.jde.2004.04.011.![]() ![]() ![]() |
[17] |
I. Chueshov, M. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Comm. Partial Differential Equations, 27 (2002), 1901-1951.
doi: 10.1081/PDE-120016132.![]() ![]() ![]() |
[18] |
P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013.
![]() ![]() |
[19] |
F. Conrad and Ö. Morgül, On the stabilization of a flexible beam with a tip mass, SIAM J. Control Optim., 36 (1998), 1962-1986.
doi: 10.1137/S0363012996302366.![]() ![]() ![]() |
[20] |
Darmawijoyo and van Horssen, On boundary damping for a weakly nonlinear wave equation, Nonlinear Dynam., 30 (2002), 179-191.
doi: 10.1023/A:1020473930223.![]() ![]() ![]() |
[21] |
G. G. Doronin, N. A. Lar'kin and A. J. Souza, A hyperbolic problem with nonlinear second-order boundary damping, Electron. J. Differential Equations, (1998), 10pp. (electronic).
![]() ![]() |
[22] |
A. Favini, C. G. Gal, J. A. Goldstein, G. R. Goldstein and S. Romanelli, The non-autonomous wave equation with general Wentzell boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 317-329.
doi: 10.1017/S0308210500003905.![]() ![]() ![]() |
[23] |
H. Feng, S. Li and X. Zhi, Blow-up solutions for a nonlinear wave equation with boundary damping and interior source, Nonlinear Anal., 75 (2012), 2273-2280.
doi: 10.1016/j.na.2011.10.027.![]() ![]() ![]() |
[24] |
A. Figotin and G. Reyes, Lagrangian variational framework for boundary value problems, J. Math. Phys., 56 (2015), 1-35.
doi: 10.1063/1.4931135.![]() ![]() ![]() |
[25] |
A. Fiscella and E. Vitillaro, Blow-up for the wave equation with nonlinear source and boundary damping terms, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 759-778.
doi: 10.1017/S0308210515000165.![]() ![]() ![]() |
[26] |
N. Fourrier and I. Lasiecka, Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions, Evol. Equ. Control Theory, 2 (2013), 631-667.
doi: 10.3934/eect.2013.2.631.![]() ![]() ![]() |
[27] |
C. G. Gal, G. R. Goldstein and J. A. Goldstein, Oscillatory boundary conditions for acoustic wave equations, J. Evol. Equ., 3 (2003), 623-635.
doi: 10.1007/s00028-003-0113-z.![]() ![]() ![]() |
[28] |
V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109 (1994), 295-308.
doi: 10.1006/jdeq.1994.1051.![]() ![]() ![]() |
[29] |
G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.
![]() ![]() |
[30] |
P. J. Graber, Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping, J. Evol. Equ., 12 (2012), 141-164.
doi: 10.1007/s00028-011-0127-x.![]() ![]() ![]() |
[31] |
P. J. Graber and I. Lasiecka, Analyticity and Gevrey class regularity for a strongly damped wave equation with hyperbolic dynamic boundary conditions, Semigroup Forum, 88 (2014), 333-365.
doi: 10.1007/s00233-013-9534-3.![]() ![]() ![]() |
[32] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, vol. 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985.
![]() ![]() |
[33] |
B. Guo and C.-Z. Xu, On the spectrum-determined growth condition of a vibration cable with a tip mass, IEEE Trans. Automat. Control, 45 (2000), 89-93.
doi: 10.1109/9.827360.![]() ![]() ![]() |
[34] |
T. G. Ha, Blow-up for semilinear wave equation with boundary damping and source terms, J. Math. Anal. Appl., 390 (2012), 328-334.
doi: 10.1016/j.jmaa.2012.01.037.![]() ![]() ![]() |
[35] |
T. G. Ha, Blow-up for wave equation with weak boundary damping and source terms, Appl. Math. Lett., 49 (2015), 166-172.
doi: 10.1016/j.aml.2015.05.003.![]() ![]() ![]() |
[36] |
T. Kashiwabara, C. M. Colciago, L. Dedè and and A. Quarteroni, Well-posedness, regularity, and convergence analysis of the finite element approximation of a generalized Robin boundary value problem, SIAM J. Numer. Anal., 53 (2015), 105-126.
doi: 10.1137/140954477.![]() ![]() ![]() |
[37] |
I. Lasiecka and L. Bociu, Well-posedness and blow-up of solutions to wave equations with supercritical boundary sources and boundary damping, In Differential & Difference Equations and Applications, Hindawi Publ. Corp., New York, (2006), 635–643.
![]() ![]() |
[38] |
I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential Integral Equation, 6 (1993), 507-533.
![]() ![]() |
[39] |
H. A. Levine and J. Serrin, Global nonexistence theorems for quasilinear evolution equations with dissipation, Arch. Rational Mech. Anal., 137 (1997), 341-361.
doi: 10.1007/s002050050032.![]() ![]() ![]() |
[40] |
W. Littman and B. Liu, On the spectral properties and stabilization of acoustic flow, SIAM J. Appl. Math., 59 (1999), 17–34 (electronic).
doi: 10.1137/S0036139996314106.![]() ![]() ![]() |
[41] |
W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity, Arch. Rational Mech. Anal., 103 (1988), 193-236.
doi: 10.1007/BF00251758.![]() ![]() ![]() |
[42] |
W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping, Ann. Mat. Pura Appl. (4), 152 (1988), 281-330.
doi: 10.1007/BF01766154.![]() ![]() ![]() |
[43] |
T. Meurer and A. Kugi, Tracking control design for a wave equation with dynamic boundary conditions modeling a piezoelectric stack actuator, Internat. J. Robust Nonlinear Control, 21 (2011), 542-562.
doi: 10.1002/rnc.1611.![]() ![]() ![]() |
[44] |
Ö. Morgül, B. Rao and F. Conrad, On the stabilization of a cable with a tip mass, IEEE Trans. Automat. Control, 39 (1994), 2140-2145.
doi: 10.1109/9.328811.![]() ![]() ![]() |
[45] |
P. Morse and K. Ingard, Theoretical Acoustics, International series in pure and applied physics, Princeton University Press, 1968.
![]() |
[46] |
D. Mugnolo, Abstract wave equations with acoustic boundary conditions, Math. Nachr., 279 (2006), 299-318.
doi: 10.1002/mana.200310362.![]() ![]() ![]() |
[47] |
D. Mugnolo and E. Vitillaro, The wave equation with acoustic boundary conditions on non-locally reacting surfaces, 2021, arXiv: 2105.09219
![]() |
[48] |
P. Pucci and J. Serrin, Global nonexistence for abstract evolution equations with positive initial energy, J. Differential Equations, 150 (1998), 203-214.
doi: 10.1006/jdeq.1998.3477.![]() ![]() ![]() |
[49] |
P. Radu, Weak solutions to the Cauchy problem of a semilinear wave equation with damping and source terms, Adv. Differential Equations, 10 (2005), 1261-1300.
![]() ![]() |
[50] |
M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, 2$^{nd}$ edition, Texts in Applied Mathematics, 13. Springer-Verlag, New York, 2004.
![]() ![]() |
[51] |
W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York, 1966.
![]() ![]() |
[52] |
J. Serrin, G. Todorova and E. Vitillaro, Existence for a nonlinear wave equation with damping and source terms, Differential Integral Equations, 16 (2003), 13-50.
![]() ![]() |
[53] |
S. Sternberg, Lectures on Differential Geometry, 2$^{nd}$ edition, Chelsea Publishing Co., New York, 1983.
![]() ![]() |
[54] |
M. E. Taylor, Partial Differential Equations, Basic theory. Texts in Applied Mathematics, 23. Springer-Verlag, New York, 1996.
![]() ![]() |
[55] |
G. Teschl, Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2012.
doi: 10.1090/gsm/140.![]() ![]() ![]() |
[56] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
![]() ![]() |
[57] |
J. L. Vazquez and E. Vitillaro, Wave equation with second-order non-standard dynamical boundary conditions, Math. Models Methods Appl. Sci., 18 (2008), 2019-2054.
doi: 10.1142/S0218202508003285.![]() ![]() ![]() |
[58] |
E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation and application, Arch. Rational Mech. Anal., 149 (1999), 155-182.
doi: 10.1007/s002050050171.![]() ![]() ![]() |
[59] |
E. Vitillaro, Global existence for the wave equation with nonlinear boundary damping and source terms, J. Differential Equations, 186 (2002), 259-298.
doi: 10.1016/S0022-0396(02)00023-2.![]() ![]() ![]() |
[60] |
E. Vitillaro, A potential well theory for the wave equation with nonlinear source and boundary damping terms, Glasg. Math. J., 44 (2002), 375-395.
doi: 10.1017/S0017089502030045.![]() ![]() ![]() |
[61] |
E. Vitillaro, Strong solutions for the wave equation with a kinetic boundary condition, Recent Trends in Nonlinear Partial Differential Equations. I. Evolution problems Contemp. Math., Amer. Math. Soc., Providence, RI, 594 (2013), 295–307.
doi: 10.1090/conm/594/11793.![]() ![]() ![]() |
[62] |
E. Vitillaro, On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and source, Arch. Ration. Mech. Anal., 223 (2017), 1183-1237.
doi: 10.1007/s00205-016-1055-2.![]() ![]() ![]() |
[63] |
E. Vitillaro, On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and supercritical sources, J. Differential Equations, 265 (2018), 4873-4941.
doi: 10.1016/j.jde.2018.06.022.![]() ![]() ![]() |
[64] |
T.-J. Xiao and L. Jin, Complete second order differential equations in Banach spaces with dynamic boundary conditions, J. Differential Equations, 200 (2004), 105-136.
doi: 10.1016/j.jde.2004.01.011.![]() ![]() ![]() |
[65] |
T.-J. Xiao and J. Liang, Second order parabolic equations in Banach spaces with dynamic boundary conditions, Trans. Amer. Math. Soc., 356 (2004), 4787-4809.
doi: 10.1090/S0002-9947-04-03704-3.![]() ![]() ![]() |
[66] |
J. Zahn, Generalized Wentzell boundary conditions and quantum field theory, Ann. Henri Poincaré, 19 (2018), 163-187.
doi: 10.1007/s00023-017-0629-3.![]() ![]() ![]() |
[67] |
H. Zhang and Q. Hu, Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition, Commun. Pure Appl. Anal., 4 (2005), 861-869.
doi: 10.3934/cpaa.2005.4.861.![]() ![]() ![]() |
[68] |
Z. Zhang, Stabilization of the wave equation with variable coefficients and a dynamical boundary control, Electron. J. Differential Equations, 2016 (2016), 1-10.
![]() ![]() |
[69] |
E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim., 28 (1990), 466-477.
doi: 10.1137/0328025.![]() ![]() ![]() |