• Previous Article
    On the well-posedness and stability for the fourth-order Schrödinger equation with nonlinear derivative term
  • DCDS-S Home
  • This Issue
  • Next Article
    Existence of axisymmetric and homogeneous solutions of Navier-Stokes equations in cone regions
December  2021, 14(12): 4259-4292. doi: 10.3934/dcdss.2021131

Analysis on a diffusive SEI epidemic model with/without immigration of infected hosts

1. 

School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

3. 

School of Mathematics, Tianjin University, Tianjin 300350, China

* Corresponding author: Guanghui Zhang

Received  August 2021 Revised  September 2021 Published  December 2021 Early access  October 2021

Fund Project: C. Lei is partially supported by NSF of China (No. 11671175, 11801232), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Natural Science Foundation of the Jiangsu Province (No. BK20180999) and the Foundation of Jiangsu Normal University (No. 17XLR008). G. Zhang is partially supported by NSF of China (No. 11501225) and the Fundamental Research Funds for the Central Universities (No. 5003011008). Y. Zhang is partially supported by NSF of China (No. 11701415)

In this paper, we study a reaction-diffusion SEI epidemic model with/without immigration of infected hosts. Our results show that if there is no immigration for the infected (exposed) individuals, the model admits a threshold behaviour in terms of the basic reproduction number, and if the system includes the immigration, the disease always persists. In each case, we explore the global attractivity of the equilibrium via Lyapunov functions in the case of spatially homogeneous environment, and investigate the asymptotic behavior of the endemic equilibrium (when it exists) with respect to the small migration rate of the susceptible, exposed or infected population in the case of spatially heterogeneous environment. Our results suggest that the strategy of controlling the migration rate of population can not eradicate the disease, and the disease transmission risk will be underestimated if the immigration of infected hosts is ignored.

Citation: Chengxia Lei, Yi Shen, Guanghui Zhang, Yuxiang Zhang. Analysis on a diffusive SEI epidemic model with/without immigration of infected hosts. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4259-4292. doi: 10.3934/dcdss.2021131
References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[2]

H. CuiP. E. Kloeden and W. Zhao, Strong $(L^2, L^\gamma \cap H^1_0)$-continuity in initial data of nonlinear reaction-diffusion equation in any space dimension, Electron. Res. Arch., 28 (2020), 1357-1374.  doi: 10.3934/era.2020072.  Google Scholar

[3]

R. Cui, Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2997-3022.  doi: 10.3934/dcdsb.2020217.  Google Scholar

[4]

R. CuiK.-Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differential Equations, 263 (2017), 2343-2373.  doi: 10.1016/j.jde.2017.03.045.  Google Scholar

[5]

R. Cui, H. Li, R. Peng and M. Zhou, Concentration behavior of endemic equilibrium for a reaction-diffusion-advection SIS epidemic model with mass action infection mechanism, Calc. Var. Partial Differential Equations, 60 (2021), 38pp. doi: 10.1007/s00526-021-01992-w.  Google Scholar

[6]

R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343.  doi: 10.1016/j.jde.2016.05.025.  Google Scholar

[7]

K. Deng and Y. Wu, Asymptotic behavior of an SIR reaction-diffusion model with a linear source, Discrete Contin. Dyn. Syst. Ser. B, 24 (2018), 5945-5957.   Google Scholar

[8]

Z. Du and R. Peng, A priori $L^{\infty}$ estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429-1439.  doi: 10.1007/s00285-015-0914-z.  Google Scholar

[9]

Y. DuR. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.  doi: 10.1016/j.jde.2008.11.007.  Google Scholar

[10]

S. Han and C. Lei, Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence, Appl. Math. Lett., 98 (2019), 114-120.  doi: 10.1016/j.aml.2019.05.045.  Google Scholar

[11]

M. HuangM. TangJ. Yu and B. Zheng, A stage structured model of delay differential equations for Aedes mosquito population suppression, Discrete Contin. Dyn. Syst., 40 (2020), 3467-3484.  doi: 10.3934/dcds.2020042.  Google Scholar

[12]

Y. Kabeya, Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere, Discrete Contin. Dyn. Syst., 40 (2020), 3529-3559.  doi: 10.3934/dcds.2020040.  Google Scholar

[13]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Am. Math. Soc. Transl., 3 (1948), 3-95.   Google Scholar

[14]

K. Kuto, H. Matsuzawa and R. Peng, Concentration profile of the endemic equilibria of a reaction-diffusion-advection SIS epidemic model, Calc. Var. Partial Differential Equations, 56 (2017), 28pp. doi: 10.1007/s00526-017-1207-8.  Google Scholar

[15]

C. LeiF. Li and J. Liu, Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4499-4517.  doi: 10.3934/dcdsb.2018173.  Google Scholar

[16]

C. LeiZ. Lin and Q. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differential Equations, 257 (2014), 145-166.  doi: 10.1016/j.jde.2014.03.015.  Google Scholar

[17]

C. LeiJ. Xiong and X. Zhou, Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 81-98.  doi: 10.3934/dcdsb.2019173.  Google Scholar

[18]

C. Lei and J. Zhou, Long-time dynamics of a reaction-diffusion system with negative feedback and inhibition, Appl. Math. Lett., 107 (2020), 106475, 8pp. doi: 10.1016/j.aml.2020.106475.  Google Scholar

[19]

B. Li and Q. Bie, Long-time dynamics of an SIRS reaction-diffusion epidemic model, J. Math. Anal. Appl., 475 (2019), 1910-1926.  doi: 10.1016/j.jmaa.2019.03.062.  Google Scholar

[20]

B. Li, H. Li and Y. Tong, Analysis on a diffusive SIS epidemic model with logistic source, Z. Angew. Math. Phys., 68 (2017), 25pp. doi: 10.1007/s00033-017-0845-1.  Google Scholar

[21]

H. Li and R. Peng, Dynamics and asymptotic profiles of endemic equilibrium for SIS epidemic patch models, J. Math. Biol., 79 (2019), 1279-1317.  doi: 10.1007/s00285-019-01395-8.  Google Scholar

[22]

H. LiR. Peng and F.-B. Wang, Vary total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913.  doi: 10.1016/j.jde.2016.09.044.  Google Scholar

[23]

H. LiR. Peng and Z.-A. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: Analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129-2153.  doi: 10.1137/18M1167863.  Google Scholar

[24]

H. LiR. Peng and T. Xiang, Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion, European J. Appl. Math., 31 (2020), 26-56.  doi: 10.1017/S0956792518000463.  Google Scholar

[25]

B. LiJ. Zhou and X. Zhou, Asymptotic profiles of endemic equilibrium of a diffusive SIS epidemic system with nonlinear incidence function in a heterogeneous environment, Proc. Amer. Math. Soc., 148 (2020), 4445-4453.  doi: 10.1090/proc/15117.  Google Scholar

[26]

Q. LiuD. JiangT. Hayat and A. Alsaedi, Dynamical behavior of a multigroup SIRS epidemic model with standard incidence rates and Markovian switching, Discrete Contin. Dyn. Syst., 39 (2019), 5683-5706.  doi: 10.3934/dcds.2019249.  Google Scholar

[27]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[28]

C. C. McCluskey, Lyapunov functions for disease models with immigration of infected hosts, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 4479-4491.  doi: 10.3934/dcdsb.2020296.  Google Scholar

[29]

C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progression, Math. Biosci. Eng., 3 (2006), 603-614.  doi: 10.3934/mbe.2006.3.603.  Google Scholar

[30]

E. Mitidieri and G. Sweers, Weakly coupled elliptic systems and positivity, Math. Nachr., 173 (1995), 259-286.  doi: 10.1002/mana.19951730115.  Google Scholar

[31]

S. Pan, Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle, Electron. Res. Arch., 27 (2019), 89-99.  doi: 10.3934/era.2019011.  Google Scholar

[32]

R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Part Ⅰ, J. Differential Equations, 247 (2009), 1096-1119.  doi: 10.1016/j.jde.2009.05.002.  Google Scholar

[33]

R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247.  doi: 10.1016/j.na.2008.10.043.  Google Scholar

[34]

R. PengJ. Shi and M. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 21 (2008), 1471-1488.  doi: 10.1088/0951-7715/21/7/006.  Google Scholar

[35]

R. Peng and Y. Wu, Global $L^\infty$-bounds and long-time behavior of a diffusive epidemic system in a heterogeneous environment, SIAM J. Math. Anal., 53 (2021), 2776-2810.  doi: 10.1137/19M1276030.  Google Scholar

[36]

R. Peng and F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: Effects of epidemic risk and population movement, Phys. D., 259 (2013), 8-25.  doi: 10.1016/j.physd.2013.05.006.  Google Scholar

[37]

R. Peng and X. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.  doi: 10.1088/0951-7715/25/5/1451.  Google Scholar

[38]

L. Pu and Z. Lin, A diffusive SIS epidemic model in a heterogeneous and periodically evolving environment, Math. Biosci. Eng., 16 (2019), 3094-3110.  doi: 10.3934/mbe.2019153.  Google Scholar

[39]

S. Rokn-e-vafa and H. T. Tehrani, Diffusive logistic equations with harvesting and heterogeneity under strong growth rate, Adv. Nonlinear Anal., 8 (2019), 455-467.  doi: 10.1515/anona-2016-0208.  Google Scholar

[40]

T. Saanouni, Global and non global solutions for a class of coupled parabolic systems, Adv. Nonlinear Anal., 9 (2020), 1383-1401.  doi: 10.1515/anona-2020-0073.  Google Scholar

[41]

R. P. Sigdel and C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration, Appl. Math. Comput., 243 (2014), 684-689.  doi: 10.1016/j.amc.2014.06.020.  Google Scholar

[42]

P. SongY. Lou and Y. Xiao, A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differential Equations, 267 (2019), 5084-5114.  doi: 10.1016/j.jde.2019.05.022.  Google Scholar

[43]

X. Sun and R. Cui, Analysis on a diffusive SIS epidemic model with saturated incidence rate and linear source in a heterogeneous environment, J. Math. Anal. Appl., 490 (2020), 124212, 22pp. doi: 10.1016/j.jmaa.2020.124212.  Google Scholar

[44]

J. Suo and B. Li, Analysis on a diffusive SIS epidemic system with linear source and frequency-dependent incidence function in a heterogeneous environment, Math. Biosci. Eng., 17 (2020), 418-441.  doi: 10.3934/mbe.2020023.  Google Scholar

[45]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.  Google Scholar

[46]

Y. Tong and C. Lei, An SIS epidemic reaction-diffusion model with spontaneous infection in a spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 41 (2018), 443-460.  doi: 10.1016/j.nonrwa.2017.11.002.  Google Scholar

[47]

J. Wang and R. Cui, Analysis of a diffusive host-pathogen model with standard incidence and distinct dispersal rates, Adv. Nonlinear Anal., 10 (2021), 922-951.  doi: 10.1515/anona-2020-0161.  Google Scholar

[48]

W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.  doi: 10.1137/120872942.  Google Scholar

[49]

X. WenJ. Ji and B. Li, Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model with mass action infection mechanism, J. Math. Anal. Appl., 458 (2018), 715-729.  doi: 10.1016/j.jmaa.2017.08.016.  Google Scholar

[50]

S.-L. Wu and C.-H. Hsu, Periodic traveling fronts for partially degenerate reaction-diffusion systems with bistable and time-periodic nonlinearity, Adv. Nonlinear Anal., 9 (2020), 923-957.  doi: 10.1515/anona-2020-0033.  Google Scholar

[51]

Y. Wu and X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differential Equations, 261 (2016), 4424-4447.  doi: 10.1016/j.jde.2016.06.028.  Google Scholar

[52]

L. XuM. ZdechlikM. C. SmithM. B. RayamajhiD. L. DeAngelis and B. Zhang, Simulation of post-hurricane impact on invasive species with biological control management, Discrete Contin. Dyn. Syst., 40 (2020), 4059-4071.  doi: 10.3934/dcds.2020038.  Google Scholar

[53]

Y. YangY.-R. Yang and X.-J. Jiao, Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence, Electron. Res. Arch., 28 (2020), 1-13.  doi: 10.3934/era.2020001.  Google Scholar

[54]

B. Zheng and J. Yu, Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency, Adv. Nonlinear Anal., 11 (2022), 212-224.  doi: 10.1515/anona-2020-0194.  Google Scholar

[55]

J. Zhang and R. Cui, Qualitative analysis on a diffusive SIS epidemic system with logistic source and spontaneous infection in a heterogeneous environment, Nonl. Anal. Real World Appl., 55 (2020), 103115, 20pp. doi: 10.1016/j.nonrwa.2020.103115.  Google Scholar

[56]

J. Zhang and R. Cui, Asymptotic profiles of the endemic equilibrium of a diffusive SIS epidemic system with saturated incidence rate and spontaneous infection, Math. Methods Appl. Sci., 44 (2021), 517-532.  doi: 10.1002/mma.6754.  Google Scholar

[57]

X.-Q. Zhao, Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications, Can. Appl. Math. Q., 3 (1995), 473-495.   Google Scholar

[58]

X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16. Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.  Google Scholar

show all references

References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[2]

H. CuiP. E. Kloeden and W. Zhao, Strong $(L^2, L^\gamma \cap H^1_0)$-continuity in initial data of nonlinear reaction-diffusion equation in any space dimension, Electron. Res. Arch., 28 (2020), 1357-1374.  doi: 10.3934/era.2020072.  Google Scholar

[3]

R. Cui, Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2997-3022.  doi: 10.3934/dcdsb.2020217.  Google Scholar

[4]

R. CuiK.-Y. Lam and Y. Lou, Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differential Equations, 263 (2017), 2343-2373.  doi: 10.1016/j.jde.2017.03.045.  Google Scholar

[5]

R. Cui, H. Li, R. Peng and M. Zhou, Concentration behavior of endemic equilibrium for a reaction-diffusion-advection SIS epidemic model with mass action infection mechanism, Calc. Var. Partial Differential Equations, 60 (2021), 38pp. doi: 10.1007/s00526-021-01992-w.  Google Scholar

[6]

R. Cui and Y. Lou, A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343.  doi: 10.1016/j.jde.2016.05.025.  Google Scholar

[7]

K. Deng and Y. Wu, Asymptotic behavior of an SIR reaction-diffusion model with a linear source, Discrete Contin. Dyn. Syst. Ser. B, 24 (2018), 5945-5957.   Google Scholar

[8]

Z. Du and R. Peng, A priori $L^{\infty}$ estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429-1439.  doi: 10.1007/s00285-015-0914-z.  Google Scholar

[9]

Y. DuR. Peng and M. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.  doi: 10.1016/j.jde.2008.11.007.  Google Scholar

[10]

S. Han and C. Lei, Global stability of equilibria of a diffusive SEIR epidemic model with nonlinear incidence, Appl. Math. Lett., 98 (2019), 114-120.  doi: 10.1016/j.aml.2019.05.045.  Google Scholar

[11]

M. HuangM. TangJ. Yu and B. Zheng, A stage structured model of delay differential equations for Aedes mosquito population suppression, Discrete Contin. Dyn. Syst., 40 (2020), 3467-3484.  doi: 10.3934/dcds.2020042.  Google Scholar

[12]

Y. Kabeya, Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere, Discrete Contin. Dyn. Syst., 40 (2020), 3529-3559.  doi: 10.3934/dcds.2020040.  Google Scholar

[13]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Am. Math. Soc. Transl., 3 (1948), 3-95.   Google Scholar

[14]

K. Kuto, H. Matsuzawa and R. Peng, Concentration profile of the endemic equilibria of a reaction-diffusion-advection SIS epidemic model, Calc. Var. Partial Differential Equations, 56 (2017), 28pp. doi: 10.1007/s00526-017-1207-8.  Google Scholar

[15]

C. LeiF. Li and J. Liu, Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 4499-4517.  doi: 10.3934/dcdsb.2018173.  Google Scholar

[16]

C. LeiZ. Lin and Q. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differential Equations, 257 (2014), 145-166.  doi: 10.1016/j.jde.2014.03.015.  Google Scholar

[17]

C. LeiJ. Xiong and X. Zhou, Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 81-98.  doi: 10.3934/dcdsb.2019173.  Google Scholar

[18]

C. Lei and J. Zhou, Long-time dynamics of a reaction-diffusion system with negative feedback and inhibition, Appl. Math. Lett., 107 (2020), 106475, 8pp. doi: 10.1016/j.aml.2020.106475.  Google Scholar

[19]

B. Li and Q. Bie, Long-time dynamics of an SIRS reaction-diffusion epidemic model, J. Math. Anal. Appl., 475 (2019), 1910-1926.  doi: 10.1016/j.jmaa.2019.03.062.  Google Scholar

[20]

B. Li, H. Li and Y. Tong, Analysis on a diffusive SIS epidemic model with logistic source, Z. Angew. Math. Phys., 68 (2017), 25pp. doi: 10.1007/s00033-017-0845-1.  Google Scholar

[21]

H. Li and R. Peng, Dynamics and asymptotic profiles of endemic equilibrium for SIS epidemic patch models, J. Math. Biol., 79 (2019), 1279-1317.  doi: 10.1007/s00285-019-01395-8.  Google Scholar

[22]

H. LiR. Peng and F.-B. Wang, Vary total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913.  doi: 10.1016/j.jde.2016.09.044.  Google Scholar

[23]

H. LiR. Peng and Z.-A. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: Analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129-2153.  doi: 10.1137/18M1167863.  Google Scholar

[24]

H. LiR. Peng and T. Xiang, Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion, European J. Appl. Math., 31 (2020), 26-56.  doi: 10.1017/S0956792518000463.  Google Scholar

[25]

B. LiJ. Zhou and X. Zhou, Asymptotic profiles of endemic equilibrium of a diffusive SIS epidemic system with nonlinear incidence function in a heterogeneous environment, Proc. Amer. Math. Soc., 148 (2020), 4445-4453.  doi: 10.1090/proc/15117.  Google Scholar

[26]

Q. LiuD. JiangT. Hayat and A. Alsaedi, Dynamical behavior of a multigroup SIRS epidemic model with standard incidence rates and Markovian switching, Discrete Contin. Dyn. Syst., 39 (2019), 5683-5706.  doi: 10.3934/dcds.2019249.  Google Scholar

[27]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[28]

C. C. McCluskey, Lyapunov functions for disease models with immigration of infected hosts, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 4479-4491.  doi: 10.3934/dcdsb.2020296.  Google Scholar

[29]

C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progression, Math. Biosci. Eng., 3 (2006), 603-614.  doi: 10.3934/mbe.2006.3.603.  Google Scholar

[30]

E. Mitidieri and G. Sweers, Weakly coupled elliptic systems and positivity, Math. Nachr., 173 (1995), 259-286.  doi: 10.1002/mana.19951730115.  Google Scholar

[31]

S. Pan, Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle, Electron. Res. Arch., 27 (2019), 89-99.  doi: 10.3934/era.2019011.  Google Scholar

[32]

R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. Part Ⅰ, J. Differential Equations, 247 (2009), 1096-1119.  doi: 10.1016/j.jde.2009.05.002.  Google Scholar

[33]

R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247.  doi: 10.1016/j.na.2008.10.043.  Google Scholar

[34]

R. PengJ. Shi and M. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 21 (2008), 1471-1488.  doi: 10.1088/0951-7715/21/7/006.  Google Scholar

[35]

R. Peng and Y. Wu, Global $L^\infty$-bounds and long-time behavior of a diffusive epidemic system in a heterogeneous environment, SIAM J. Math. Anal., 53 (2021), 2776-2810.  doi: 10.1137/19M1276030.  Google Scholar

[36]

R. Peng and F. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: Effects of epidemic risk and population movement, Phys. D., 259 (2013), 8-25.  doi: 10.1016/j.physd.2013.05.006.  Google Scholar

[37]

R. Peng and X. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.  doi: 10.1088/0951-7715/25/5/1451.  Google Scholar

[38]

L. Pu and Z. Lin, A diffusive SIS epidemic model in a heterogeneous and periodically evolving environment, Math. Biosci. Eng., 16 (2019), 3094-3110.  doi: 10.3934/mbe.2019153.  Google Scholar

[39]

S. Rokn-e-vafa and H. T. Tehrani, Diffusive logistic equations with harvesting and heterogeneity under strong growth rate, Adv. Nonlinear Anal., 8 (2019), 455-467.  doi: 10.1515/anona-2016-0208.  Google Scholar

[40]

T. Saanouni, Global and non global solutions for a class of coupled parabolic systems, Adv. Nonlinear Anal., 9 (2020), 1383-1401.  doi: 10.1515/anona-2020-0073.  Google Scholar

[41]

R. P. Sigdel and C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration, Appl. Math. Comput., 243 (2014), 684-689.  doi: 10.1016/j.amc.2014.06.020.  Google Scholar

[42]

P. SongY. Lou and Y. Xiao, A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differential Equations, 267 (2019), 5084-5114.  doi: 10.1016/j.jde.2019.05.022.  Google Scholar

[43]

X. Sun and R. Cui, Analysis on a diffusive SIS epidemic model with saturated incidence rate and linear source in a heterogeneous environment, J. Math. Anal. Appl., 490 (2020), 124212, 22pp. doi: 10.1016/j.jmaa.2020.124212.  Google Scholar

[44]

J. Suo and B. Li, Analysis on a diffusive SIS epidemic system with linear source and frequency-dependent incidence function in a heterogeneous environment, Math. Biosci. Eng., 17 (2020), 418-441.  doi: 10.3934/mbe.2020023.  Google Scholar

[45]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.  Google Scholar

[46]

Y. Tong and C. Lei, An SIS epidemic reaction-diffusion model with spontaneous infection in a spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 41 (2018), 443-460.  doi: 10.1016/j.nonrwa.2017.11.002.  Google Scholar

[47]

J. Wang and R. Cui, Analysis of a diffusive host-pathogen model with standard incidence and distinct dispersal rates, Adv. Nonlinear Anal., 10 (2021), 922-951.  doi: 10.1515/anona-2020-0161.  Google Scholar

[48]

W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652-1673.  doi: 10.1137/120872942.  Google Scholar

[49]

X. WenJ. Ji and B. Li, Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model with mass action infection mechanism, J. Math. Anal. Appl., 458 (2018), 715-729.  doi: 10.1016/j.jmaa.2017.08.016.  Google Scholar

[50]

S.-L. Wu and C.-H. Hsu, Periodic traveling fronts for partially degenerate reaction-diffusion systems with bistable and time-periodic nonlinearity, Adv. Nonlinear Anal., 9 (2020), 923-957.  doi: 10.1515/anona-2020-0033.  Google Scholar

[51]

Y. Wu and X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differential Equations, 261 (2016), 4424-4447.  doi: 10.1016/j.jde.2016.06.028.  Google Scholar

[52]

L. XuM. ZdechlikM. C. SmithM. B. RayamajhiD. L. DeAngelis and B. Zhang, Simulation of post-hurricane impact on invasive species with biological control management, Discrete Contin. Dyn. Syst., 40 (2020), 4059-4071.  doi: 10.3934/dcds.2020038.  Google Scholar

[53]

Y. YangY.-R. Yang and X.-J. Jiao, Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence, Electron. Res. Arch., 28 (2020), 1-13.  doi: 10.3934/era.2020001.  Google Scholar

[54]

B. Zheng and J. Yu, Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency, Adv. Nonlinear Anal., 11 (2022), 212-224.  doi: 10.1515/anona-2020-0194.  Google Scholar

[55]

J. Zhang and R. Cui, Qualitative analysis on a diffusive SIS epidemic system with logistic source and spontaneous infection in a heterogeneous environment, Nonl. Anal. Real World Appl., 55 (2020), 103115, 20pp. doi: 10.1016/j.nonrwa.2020.103115.  Google Scholar

[56]

J. Zhang and R. Cui, Asymptotic profiles of the endemic equilibrium of a diffusive SIS epidemic system with saturated incidence rate and spontaneous infection, Math. Methods Appl. Sci., 44 (2021), 517-532.  doi: 10.1002/mma.6754.  Google Scholar

[57]

X.-Q. Zhao, Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications, Can. Appl. Math. Q., 3 (1995), 473-495.   Google Scholar

[58]

X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16. Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.  Google Scholar

[1]

Connell McCluskey. Lyapunov functions for disease models with immigration of infected hosts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4479-4491. doi: 10.3934/dcdsb.2020296

[2]

C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008

[3]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[4]

Chengxia Lei, Xinhui Zhou. Concentration phenomenon of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with spontaneous infection. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021174

[5]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[6]

Y. Chen, L. Wang. Global attractivity of a circadian pacemaker model in a periodic environment. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 277-288. doi: 10.3934/dcdsb.2005.5.277

[7]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[8]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[9]

Fengqi Yi, Hua Zhang, Alhaji Cherif, Wenying Zhang. Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis. Communications on Pure & Applied Analysis, 2014, 13 (1) : 347-369. doi: 10.3934/cpaa.2014.13.347

[10]

G. A. Enciso, E. D. Sontag. Global attractivity, I/O monotone small-gain theorems, and biological delay systems. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 549-578. doi: 10.3934/dcds.2006.14.549

[11]

Jeffrey R. Haack, Cory D. Hauck. Oscillatory behavior of Asymptotic-Preserving splitting methods for a linear model of diffusive relaxation. Kinetic & Related Models, 2008, 1 (4) : 573-590. doi: 10.3934/krm.2008.1.573

[12]

E. J. Avila–Vales, T. Montañez–May. Asymptotic behavior in a general diffusive three-species predator-prey model. Communications on Pure & Applied Analysis, 2002, 1 (2) : 253-267. doi: 10.3934/cpaa.2002.1.253

[13]

Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5945-5957. doi: 10.3934/dcdsb.2019114

[14]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[15]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[16]

C. Connell McCluskey. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences & Engineering, 2012, 9 (4) : 819-841. doi: 10.3934/mbe.2012.9.819

[17]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[18]

Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265

[19]

Yuming Qin, Jianlin Zhang. Global existence and asymptotic behavior of spherically symmetric solutions for the multi-dimensional infrarelativistic model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2529-2574. doi: 10.3934/cpaa.2019115

[20]

Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun. Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks & Heterogeneous Media, 2013, 8 (4) : 943-968. doi: 10.3934/nhm.2013.8.943

2020 Impact Factor: 2.425

Article outline

[Back to Top]