
-
Previous Article
Global existence and nonexistence for a class of finitely degenerate coupled parabolic systems with high initial energy level
- DCDS-S Home
- This Issue
-
Next Article
Preface: Special issue on advances in partial differential equations
Existence of a solution of discrete Emden-Fowler equation caused by continuous equation
1. | Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Department of Differential Equations, Leninskiye Gory 1, Main Building, 119991 Moscow, Russian Federation |
2. | Plekhanov Russian University of Economics, Institute of Digital Economics and Information Technologies, Department of Higher Mathematics, Stremyanny lane 36, 117997 Moscow, Russian Federation |
3. | Brno University of Technology, Faculty of Civil Engineering, Department of Mathematics and Descriptive Geometry, Veveří 331/95,602 00 Brno, Czech Republic |
4. | Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Mathematics, Technická 2848/8,616 00 Brno, Czech Republic |
$ \Delta^2 u(k) \pm k^\alpha u^m(k) = 0 $ |
$ u\colon \{k_0, k_0+1, \dots\}\to \mathbb{R} $ |
$ \Delta^2 u(k) $ |
$ k_0 $ |
$ \alpha $ |
$ m $ |
$ m\not = 0, 1 $ |
References:
[1] |
R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods and Applications, 2$^ {nd}$ edition, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, 2000.
doi: 10.1201/9781420027020. |
[2] |
E. Akin-Bohner and J. Hoffacker,
Oscillation properties of an Emden–Fowler type equation on discrete time scales, J. Difference Equ. Appl., 9 (2003), 603-612.
doi: 10.1080/1023619021000053575. |
[3] |
I. V. Astashova, Asymptotic behavior of singular solutions of Emden–Fowler type equations, Translation of Differ. Uravn., 55 (2019), 597–606, Differ. Equ., 55 (2019), 581–590, (Russian).
doi: 10.1134/S001226611905001X. |
[4] |
I. V. Astashova,
On asymptotical behavior of solutions to a quasi-linear second order differential equations, Funct. Differ. Equ., 16 (2009), 93-115.
|
[5] |
I. Astashova,
On asymptotic behavior of solutions to Emden–Fowler type higher-order differential equations, Math. Bohem., 4 (2015), 479-488.
doi: 10.21136/MB.2015.144464. |
[6] |
I. V. Astashova,
Uniqueness of solutions to second order Emden–Fowler type equations with general power–law nonlinearity, J. Math. Sci. (N.Y.), 255 (2021), 543-550.
doi: 10.1007/s10958-021-05391-6. |
[7] |
F. V. Atkinson,
On second-order non-linear oscillations, Pacific J. Math., 5 (1955), 643-647.
doi: 10.2140/pjm.1955.5.643. |
[8] |
R. Bellman, Stability Theory of Differential Equations, Dover Publications, Inc., New York, 2008. |
[9] |
M. Bhakta and P.-T. Nguen,
On the existence and multiplicity of solutions to fractional Lane-Emden elliptic systems involving measures, Adv. Nonlinear Anal., 9 (2020), 1480-1503.
doi: 10.1515/anona-2020-0060. |
[10] |
S. Bodine and D. A. Lutz, Asymptotic Integration of Differential and Difference Equations, Lecture Notes in Mathematics, 2129, Springer, Cham, 2015.
doi: 10.1007/978-3-319-18248-3. |
[11] |
M. Bohner and S. G. Georgiev, Multivariable Dynamic Calculus on Time Scales, Springer, Cham, 2016.
doi: 10.1007/978-3-319-47620-9. |
[12] |
M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
doi: 10.1007/978-0-8176-8230-9. |
[13] |
M. Bohner and A. Peterson, Dynamic Equations on Time Scales. An Introduction with Applications, Birkhäuser, Boston, Inc., Boston, MA, 2001.
doi: 10.1007/978-1-4612-0201-1. |
[14] |
Z. Cheng and G. Huang,
A Liouville theorem for the subcritical Lane–Emden system, Discrete Contin. Dyn. Syst., 39 (2019), 1359-1377.
doi: 10.3934/dcds.2019058. |
[15] |
C. Cowan and A. Razani,
Singular solutions of a Lane–Emden system, Discrete Contin. Dyn. Syst., 41 (2021), 621-656.
doi: 10.3934/dcds.2020291. |
[16] |
J. Diblík,
Asymptotic behavior of solutions of discrete equations, Funct. Differ. Equ., 11 (2004), 37-48.
|
[17] |
J. Diblík,
Discrete retract principle for systems of discrete equations, Comput. Math. Appl., 42 (2001), 515-528.
doi: 10.1016/S0898-1221(01)00174-2. |
[18] |
J. Diblík,
Long-time behavior of positive solutions of a differential equation with state-dependent delay, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 31-46.
doi: 10.3934/dcdss.2020002. |
[19] |
J. Diblík and I. Hlavičková,
Asymptotic properties of solutions of the discrete analogue of the Emden–Fowler equation, Adv. Stud. Pure Math., 53 (2009), 23-32.
doi: 10.2969/aspm/05310023. |
[20] |
J. Diblík and E. Korobko,
Solutions of perturbed second-order discrete Emden–Fowler type equation with power asymptotics of solutions, Mathematics, Information Technologies and Applied Sciences, Post-Conference Proceedings of Extended Versions of Selected Papers, 2020 (2020), 30-44.
|
[21] |
J. Diblík and Z. Svoboda,
Existence of strictly decreasing positive solutions of linear differential equations of neutral type, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 67-84.
doi: 10.3934/dcdss.2020004. |
[22] |
S. N. Elaydi, An Introduction to Difference Equations, 3$^{rd}$ edition, Undergraduate Texts in Mathematics, Springer, New York, 2005. |
[23] |
R. Emden, Gaskugeln: Anwendungen der mechanischen Wärmetheorie auf Kosmologie und Meteorologischen Probleme, Teubner, Leipzig and Berlin, 1907.
doi: 10.1007/BF01736734. |
[24] |
L. Erbe, J. Baoguo and A. Peterson,
On the asymptotic behaviour of solutions of Emden–Fowler equations on time scales, Ann. Mat. Pura Appl., 191 (2012), 205-217.
doi: 10.1007/s10231-010-0179-5. |
[25] |
R. H. Fowler,
The solutions of Emden's and similar differential equations, Mon. Not. R. Astron. Soc., 91 (1930), 63-91.
doi: 10.1093/mnras/91.1.63. |
[26] |
M. Galewski,
Dependence on parameters for a discrete Emden–Fowler equation, Appl. Math. Comput., 218 (2011), 1247-1253.
doi: 10.1016/j.amc.2011.06.005. |
[27] |
H. Goenner and P. Havas,
Exact solutions of the generalized Lane–Emden equation, J. Math. Phys., 41 (2000), 7029-7042.
|
[28] |
S. Goldberg, Introduction to Difference Equations with Illustrative Examples from Economics, Psychology, and Sociology, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London 1958 |
[29] |
P. Guha,
Generalized Emden–Fowler equations in noncentral curl forces and first integrals, Acta Mech, 231 (2020), 815-825.
doi: 10.1007/s00707-019-02602-9. |
[30] |
T.-X. He, P. J.-S. Shiue, Z. Nie and M. Chen,
Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electron. Res. Arch., 28 (2020), 1049-1062.
doi: 10.3934/era.2020057. |
[31] |
X. He, K. Wang and L. Xu,
Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium, Electron. Res. Arch., 28 (2020), 1503-1528.
doi: 10.3934/era.2020079. |
[32] |
C. M. Khalique, The Lane–Emden–Fowler equation and its generalizations - Lie symmetry analysis, Astrophysics, I. Kucuk (Ed.), 7 (2012), 131–148. |
[33] |
I. T. Kiguradze and T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, (Russian), Mathematics and its Applications (Soviet Series), 89. Kluwer Academic Publishers Group, Dordrecht, 1993.
doi: 10.1007/978-94-011-1808-8. |
[34] |
E. Korobko, Asymptotic characterization of solutions of Emden–Fowler type difference equation, The Student Conference EEICT 2021, Faculty of Electrical Engineering and Communication. Selected papers, Brno University of Technology, (2021), 250–255. |
[35] |
E. Korobko, On solutions of a discrete equation of Emden–Fowler type, The Student Conference EEICT 2020, Faculty of Electrical Engineering and Communication, Brno University of Technology, (2020), 441–446. |
[36] |
H. J. Lane,
On the theoretical temperature of the Sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment, American J. of Science, 148 (1870), 57-74.
doi: 10.2475/ajs.s2-50.148.57. |
[37] |
W. T. Li and S. S. Cheng,
Asymptotically linear solutions of a discrete Emden–Fowler equation, Far East J. Math. Sci., 6 (1998), 521-542.
|
[38] |
W. T. Li, X. L. Fan and C. K. Zhong,
Positive solutions of discrete Emden–Fowler equation with singular nonlinear term, Dynam. Systems Appl., 9 (2000), 247-254.
|
[39] |
S. C. Mancas and H. C. Rost,
Two integrable classes of Emden–Fowler equations with applications in astrophysics and cosmology, Zeitschrift f. Naturforschung A, 73 (2018), 805-814.
doi: 10.1515/zna-2018-0062. |
[40] |
J. Migda, Asymptotic properties of solutions to difference equations of Emden–Fowler type, Electron. J. Qual. Theory Differ. Equ., (2019), 17pp.
doi: 10.14232/ejqtde.2019.1.77. |
[41] |
M. A. Radin, Difference Equations for Scientists and Engineering: Interdisciplinary Difference Equations, World Scientific Publishing, Singapore, 2019.
doi: 10.1142/11349. |
show all references
References:
[1] |
R. P. Agarwal, Difference Equations and Inequalities. Theory, Methods and Applications, 2$^ {nd}$ edition, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, 2000.
doi: 10.1201/9781420027020. |
[2] |
E. Akin-Bohner and J. Hoffacker,
Oscillation properties of an Emden–Fowler type equation on discrete time scales, J. Difference Equ. Appl., 9 (2003), 603-612.
doi: 10.1080/1023619021000053575. |
[3] |
I. V. Astashova, Asymptotic behavior of singular solutions of Emden–Fowler type equations, Translation of Differ. Uravn., 55 (2019), 597–606, Differ. Equ., 55 (2019), 581–590, (Russian).
doi: 10.1134/S001226611905001X. |
[4] |
I. V. Astashova,
On asymptotical behavior of solutions to a quasi-linear second order differential equations, Funct. Differ. Equ., 16 (2009), 93-115.
|
[5] |
I. Astashova,
On asymptotic behavior of solutions to Emden–Fowler type higher-order differential equations, Math. Bohem., 4 (2015), 479-488.
doi: 10.21136/MB.2015.144464. |
[6] |
I. V. Astashova,
Uniqueness of solutions to second order Emden–Fowler type equations with general power–law nonlinearity, J. Math. Sci. (N.Y.), 255 (2021), 543-550.
doi: 10.1007/s10958-021-05391-6. |
[7] |
F. V. Atkinson,
On second-order non-linear oscillations, Pacific J. Math., 5 (1955), 643-647.
doi: 10.2140/pjm.1955.5.643. |
[8] |
R. Bellman, Stability Theory of Differential Equations, Dover Publications, Inc., New York, 2008. |
[9] |
M. Bhakta and P.-T. Nguen,
On the existence and multiplicity of solutions to fractional Lane-Emden elliptic systems involving measures, Adv. Nonlinear Anal., 9 (2020), 1480-1503.
doi: 10.1515/anona-2020-0060. |
[10] |
S. Bodine and D. A. Lutz, Asymptotic Integration of Differential and Difference Equations, Lecture Notes in Mathematics, 2129, Springer, Cham, 2015.
doi: 10.1007/978-3-319-18248-3. |
[11] |
M. Bohner and S. G. Georgiev, Multivariable Dynamic Calculus on Time Scales, Springer, Cham, 2016.
doi: 10.1007/978-3-319-47620-9. |
[12] |
M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
doi: 10.1007/978-0-8176-8230-9. |
[13] |
M. Bohner and A. Peterson, Dynamic Equations on Time Scales. An Introduction with Applications, Birkhäuser, Boston, Inc., Boston, MA, 2001.
doi: 10.1007/978-1-4612-0201-1. |
[14] |
Z. Cheng and G. Huang,
A Liouville theorem for the subcritical Lane–Emden system, Discrete Contin. Dyn. Syst., 39 (2019), 1359-1377.
doi: 10.3934/dcds.2019058. |
[15] |
C. Cowan and A. Razani,
Singular solutions of a Lane–Emden system, Discrete Contin. Dyn. Syst., 41 (2021), 621-656.
doi: 10.3934/dcds.2020291. |
[16] |
J. Diblík,
Asymptotic behavior of solutions of discrete equations, Funct. Differ. Equ., 11 (2004), 37-48.
|
[17] |
J. Diblík,
Discrete retract principle for systems of discrete equations, Comput. Math. Appl., 42 (2001), 515-528.
doi: 10.1016/S0898-1221(01)00174-2. |
[18] |
J. Diblík,
Long-time behavior of positive solutions of a differential equation with state-dependent delay, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 31-46.
doi: 10.3934/dcdss.2020002. |
[19] |
J. Diblík and I. Hlavičková,
Asymptotic properties of solutions of the discrete analogue of the Emden–Fowler equation, Adv. Stud. Pure Math., 53 (2009), 23-32.
doi: 10.2969/aspm/05310023. |
[20] |
J. Diblík and E. Korobko,
Solutions of perturbed second-order discrete Emden–Fowler type equation with power asymptotics of solutions, Mathematics, Information Technologies and Applied Sciences, Post-Conference Proceedings of Extended Versions of Selected Papers, 2020 (2020), 30-44.
|
[21] |
J. Diblík and Z. Svoboda,
Existence of strictly decreasing positive solutions of linear differential equations of neutral type, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 67-84.
doi: 10.3934/dcdss.2020004. |
[22] |
S. N. Elaydi, An Introduction to Difference Equations, 3$^{rd}$ edition, Undergraduate Texts in Mathematics, Springer, New York, 2005. |
[23] |
R. Emden, Gaskugeln: Anwendungen der mechanischen Wärmetheorie auf Kosmologie und Meteorologischen Probleme, Teubner, Leipzig and Berlin, 1907.
doi: 10.1007/BF01736734. |
[24] |
L. Erbe, J. Baoguo and A. Peterson,
On the asymptotic behaviour of solutions of Emden–Fowler equations on time scales, Ann. Mat. Pura Appl., 191 (2012), 205-217.
doi: 10.1007/s10231-010-0179-5. |
[25] |
R. H. Fowler,
The solutions of Emden's and similar differential equations, Mon. Not. R. Astron. Soc., 91 (1930), 63-91.
doi: 10.1093/mnras/91.1.63. |
[26] |
M. Galewski,
Dependence on parameters for a discrete Emden–Fowler equation, Appl. Math. Comput., 218 (2011), 1247-1253.
doi: 10.1016/j.amc.2011.06.005. |
[27] |
H. Goenner and P. Havas,
Exact solutions of the generalized Lane–Emden equation, J. Math. Phys., 41 (2000), 7029-7042.
|
[28] |
S. Goldberg, Introduction to Difference Equations with Illustrative Examples from Economics, Psychology, and Sociology, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London 1958 |
[29] |
P. Guha,
Generalized Emden–Fowler equations in noncentral curl forces and first integrals, Acta Mech, 231 (2020), 815-825.
doi: 10.1007/s00707-019-02602-9. |
[30] |
T.-X. He, P. J.-S. Shiue, Z. Nie and M. Chen,
Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electron. Res. Arch., 28 (2020), 1049-1062.
doi: 10.3934/era.2020057. |
[31] |
X. He, K. Wang and L. Xu,
Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium, Electron. Res. Arch., 28 (2020), 1503-1528.
doi: 10.3934/era.2020079. |
[32] |
C. M. Khalique, The Lane–Emden–Fowler equation and its generalizations - Lie symmetry analysis, Astrophysics, I. Kucuk (Ed.), 7 (2012), 131–148. |
[33] |
I. T. Kiguradze and T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, (Russian), Mathematics and its Applications (Soviet Series), 89. Kluwer Academic Publishers Group, Dordrecht, 1993.
doi: 10.1007/978-94-011-1808-8. |
[34] |
E. Korobko, Asymptotic characterization of solutions of Emden–Fowler type difference equation, The Student Conference EEICT 2021, Faculty of Electrical Engineering and Communication. Selected papers, Brno University of Technology, (2021), 250–255. |
[35] |
E. Korobko, On solutions of a discrete equation of Emden–Fowler type, The Student Conference EEICT 2020, Faculty of Electrical Engineering and Communication, Brno University of Technology, (2020), 441–446. |
[36] |
H. J. Lane,
On the theoretical temperature of the Sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment, American J. of Science, 148 (1870), 57-74.
doi: 10.2475/ajs.s2-50.148.57. |
[37] |
W. T. Li and S. S. Cheng,
Asymptotically linear solutions of a discrete Emden–Fowler equation, Far East J. Math. Sci., 6 (1998), 521-542.
|
[38] |
W. T. Li, X. L. Fan and C. K. Zhong,
Positive solutions of discrete Emden–Fowler equation with singular nonlinear term, Dynam. Systems Appl., 9 (2000), 247-254.
|
[39] |
S. C. Mancas and H. C. Rost,
Two integrable classes of Emden–Fowler equations with applications in astrophysics and cosmology, Zeitschrift f. Naturforschung A, 73 (2018), 805-814.
doi: 10.1515/zna-2018-0062. |
[40] |
J. Migda, Asymptotic properties of solutions to difference equations of Emden–Fowler type, Electron. J. Qual. Theory Differ. Equ., (2019), 17pp.
doi: 10.14232/ejqtde.2019.1.77. |
[41] |
M. A. Radin, Difference Equations for Scientists and Engineering: Interdisciplinary Difference Equations, World Scientific Publishing, Singapore, 2019.
doi: 10.1142/11349. |





[1] |
Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019 |
[2] |
P. Lima, L. Morgado. Analysis of singular boundary value problems for an Emden-Fowler equation. Communications on Pure and Applied Analysis, 2006, 5 (2) : 321-336. doi: 10.3934/cpaa.2006.5.321 |
[3] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[4] |
Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160 |
[5] |
Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053 |
[6] |
Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011 |
[7] |
Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009 |
[8] |
Tran Ngoc Thach, Nguyen Huy Tuan, Donal O'Regan. Regularized solution for a biharmonic equation with discrete data. Evolution Equations and Control Theory, 2020, 9 (2) : 341-358. doi: 10.3934/eect.2020008 |
[9] |
Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401 |
[10] |
Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991 |
[11] |
Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053 |
[12] |
Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations and Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423 |
[13] |
Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178 |
[14] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[15] |
Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic and Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601 |
[16] |
Kin Ming Hui, Jinwan Park. Asymptotic behaviour of singular solution of the fast diffusion equation in the punctured euclidean space. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5473-5508. doi: 10.3934/dcds.2021085 |
[17] |
Zhaosheng Feng, Qingguo Meng. Exact solution for a two-dimensional KDV-Burgers-type equation with nonlinear terms of any order. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 285-291. doi: 10.3934/dcdsb.2007.7.285 |
[18] |
Jifeng Chu, Delia Ionescu-Kruse, Yanjuan Yang. Exact solution and instability for geophysical waves at arbitrary latitude. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4399-4414. doi: 10.3934/dcds.2019178 |
[19] |
Fahe Miao, Michal Fečkan, Jinrong Wang. Exact solution and instability for geophysical edge waves. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2447-2461. doi: 10.3934/cpaa.2022067 |
[20] |
Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]