# American Institute of Mathematical Sciences

• Previous Article
Existence and limit problem for fractional fourth order subdiffusion equation and Cahn-Hilliard equation
• DCDS-S Home
• This Issue
• Next Article
Existence and asymptotic profiles of the steady state for a diffusive epidemic model with saturated incidence and spontaneous infection mechanism
December  2021, 14(12): 4521-4550. doi: 10.3934/dcdss.2021135

## Global existence and blow-up results for a nonlinear model for a dynamic suspension bridge

 1 Department of Mathematics and Computer Science, University of Science, Ho Chi Minh City, Vietnam, Vietnam National University, Ho Chi Minh City, Vietnam 2 Department of Mathematics and Statistics, University of Economics Ho Chi Minh City, Vietnam

* Corresponding author: Quang-Minh Tran

Received  July 2021 Revised  October 2021 Published  December 2021 Early access  November 2021

The paper deals with global existence and blow-up results for a class of fourth-order wave equations with nonlinear damping term and superlinear source term with the coefficient depends on space and time variable. In the case the weak solution is global, we give information on the decay rate of the solution. In the case the weak solution blows up in finite time, estimate the lower bound and upper bound of the lifespan of the blow-up solution, and also estimate the blow-up rate. Finally, if our problem contains an external vertical load term, a sufficient condition is also established to obtain the global existence and general decay rate of weak solutions.

Citation: Quang-Minh Tran, Hong-Danh Pham. Global existence and blow-up results for a nonlinear model for a dynamic suspension bridge. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4521-4550. doi: 10.3934/dcdss.2021135
##### References:
 [1] G. Autuori, F. Colasuonno and P. Pucci, Lifespan estimates for solutions of polyharmonic kirchhoff systems, Math. Models Methods Appl. Sci., 22 (2012), 1150009, 36 pp. doi: 10.1142/S0218202511500096.  Google Scholar [2] H. Chen and H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.  doi: 10.3934/dcds.2019051.  Google Scholar [3] Y. Chen, X. Qiu, R. Xu and Y. Yang, Global existence and blowup of solutions for a class of nonlinear wave equations with linear pseudo-differential operator, Eur. Phys. J. Plus, 135 (2020), 573.   Google Scholar [4] Y. Chen and R. Xu, Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal. Theory Methods Appl., 192 (2020), 111664, 39 pp. doi: 10.1016/j.na.2019.111664.  Google Scholar [5] X. Dai, C. Yang, S. Huang, T. Yu and Y. Zhu, Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems, Electron. Res. Arch., 28 (2020), 91-102.  doi: 10.3934/era.2020006.  Google Scholar [6] H. Di, Y. Shang and J. Yu, Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source, Electron. Res. Arch., 28 (2020), 221-261.  doi: 10.3934/era.2020015.  Google Scholar [7] J. Fernandes and L. Maia, Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium, Discrete Contin. Dyn. Syst., 41 (2021), 1297-1318.  doi: 10.3934/dcds.2020318.  Google Scholar [8] A. Ferrero and F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst., 35 (2015), 5879-5908.  doi: 10.3934/dcds.2015.35.5879.  Google Scholar [9] F. Gazzola and M. Squassina., Global solutions and fiite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Linéaire, 23 (2006), 185-207.  doi: 10.1016/j.anihpc.2005.02.007.  Google Scholar [10] F. Gazzola and T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differ. Integr. Equations, 18 (2005), 961-990.   Google Scholar [11] A. C. Lazer and P. J. McKenna, Large amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear aalysis, SIAM Rev., 32 (1990), 537-578.  doi: 10.1137/1032120.  Google Scholar [12] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form putt = −au+f(u), Trans. Am. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar [13] H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.  doi: 10.1137/0505015.  Google Scholar [14] W. Lian, M. S. Ahmed and R. Xu, Global existence and blow up of solution for semilinear hyperbolic equation with logarithmic nonlinearity, Nonlinear Anal. Theory Methods Appl., 184 (2019), 239-257.  doi: 10.1016/j.na.2019.02.015.  Google Scholar [15] W. Lian, M. S. Ahmed and R. Xu, Global existence and blow up of solution for semi-linear hyperbolic equation with the product of logarithmic and power-type nonlinearity, Opuscula Math., 40 (2020), 111-130.  doi: 10.7494/OpMath.2020.40.1.111.  Google Scholar [16] W. Lian, J. Wang and R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differ. Equations, 269 (2020), 4914-4959.  doi: 10.1016/j.jde.2020.03.047.  Google Scholar [17] W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613-632.  doi: 10.1515/anona-2020-0016.  Google Scholar [18] M. Liao, Q. Liu and H. Ye, Global existence and blow-up of weak solutions for a class of fractional $p$-Laplacian evolution equations, Adv. Nonlinear Anal., 9 (2020), 1569-1591.  doi: 10.1515/anona-2020-0066.  Google Scholar [19] G. Liu, The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term, Electron. Res. Arch., 28 (2020), 263-289.  doi: 10.3934/era.2020016.  Google Scholar [20] X. Liu and J. Zhou, Initial-boundary value problem for a fourth-order plate equation with hardy-hénon potential and polynomial nonlinearity, Electron. Res. Arch., 28 (2020), 599-625.  doi: 10.3934/era.2020032.  Google Scholar [21] M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations, Math. Z., 214 (1993), 325-342.  doi: 10.1007/BF02572407.  Google Scholar [22] L. E. Payne and D. H. Sattinger, Sadle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar [23] D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar [24] E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Ration. Mech. Anal., 149 (1999), 155-182.  doi: 10.1007/s002050050171.  Google Scholar [25] X. Wang, Y. Chen, Y. Yang, J. Li and R. Xu, Kirchhoff-type system with linear weak damping and logarithmic nonlinearities, Nonlinear Anal. Theory Methods Appl., 188 (2019), 475-499.  doi: 10.1016/j.na.2019.06.019.  Google Scholar [26] X. Wang and R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261-288.  doi: 10.1515/anona-2020-0141.  Google Scholar [27] R. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Quart. Appl. Math., 68 (2010), 459-468.  doi: 10.1090/S0033-569X-2010-01197-0.  Google Scholar [28] R. Xu and Y. Niu, Addendum to ''global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations'', [J. Func. Anal. 264 (12) (2013), 2732–2763], J. Funct. Anal., 270 (2016), 4039-4041.  doi: 10.1016/j.jfa.2016.02.026.  Google Scholar [29] R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar [30] R. Xu, X. Wang, Y. Yang and S. Chen, Global solutions and finite time blow-up for fourth order nonlinear damped wave equation, J. Math. Phys., 59 (2018), 061503, 27 pp. doi: 10.1063/1.5006728.  Google Scholar [31] Y. Yang and R. Xu, Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up, Commun. Pure Appl. Anal., 8 (2019), 1351-1358.  doi: 10.3934/cpaa.2019065.  Google Scholar [32] M. Zhang, Q. Zhao, Y. Liu and W. Li, Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition, Electron. Res. Arch., 28 (2020), 369-381.  doi: 10.3934/era.2020021.  Google Scholar [33] J. Zhou, Initial boundary value problem for a inhomogeneous pseudo-parabolic equation, Electron. Res. Arch., 28 (2020), 67-90.  doi: 10.3934/era.2020005.  Google Scholar

show all references

##### References:
 [1] G. Autuori, F. Colasuonno and P. Pucci, Lifespan estimates for solutions of polyharmonic kirchhoff systems, Math. Models Methods Appl. Sci., 22 (2012), 1150009, 36 pp. doi: 10.1142/S0218202511500096.  Google Scholar [2] H. Chen and H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.  doi: 10.3934/dcds.2019051.  Google Scholar [3] Y. Chen, X. Qiu, R. Xu and Y. Yang, Global existence and blowup of solutions for a class of nonlinear wave equations with linear pseudo-differential operator, Eur. Phys. J. Plus, 135 (2020), 573.   Google Scholar [4] Y. Chen and R. Xu, Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal. Theory Methods Appl., 192 (2020), 111664, 39 pp. doi: 10.1016/j.na.2019.111664.  Google Scholar [5] X. Dai, C. Yang, S. Huang, T. Yu and Y. Zhu, Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems, Electron. Res. Arch., 28 (2020), 91-102.  doi: 10.3934/era.2020006.  Google Scholar [6] H. Di, Y. Shang and J. Yu, Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source, Electron. Res. Arch., 28 (2020), 221-261.  doi: 10.3934/era.2020015.  Google Scholar [7] J. Fernandes and L. Maia, Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium, Discrete Contin. Dyn. Syst., 41 (2021), 1297-1318.  doi: 10.3934/dcds.2020318.  Google Scholar [8] A. Ferrero and F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst., 35 (2015), 5879-5908.  doi: 10.3934/dcds.2015.35.5879.  Google Scholar [9] F. Gazzola and M. Squassina., Global solutions and fiite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Linéaire, 23 (2006), 185-207.  doi: 10.1016/j.anihpc.2005.02.007.  Google Scholar [10] F. Gazzola and T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differ. Integr. Equations, 18 (2005), 961-990.   Google Scholar [11] A. C. Lazer and P. J. McKenna, Large amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear aalysis, SIAM Rev., 32 (1990), 537-578.  doi: 10.1137/1032120.  Google Scholar [12] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form putt = −au+f(u), Trans. Am. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar [13] H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138-146.  doi: 10.1137/0505015.  Google Scholar [14] W. Lian, M. S. Ahmed and R. Xu, Global existence and blow up of solution for semilinear hyperbolic equation with logarithmic nonlinearity, Nonlinear Anal. Theory Methods Appl., 184 (2019), 239-257.  doi: 10.1016/j.na.2019.02.015.  Google Scholar [15] W. Lian, M. S. Ahmed and R. Xu, Global existence and blow up of solution for semi-linear hyperbolic equation with the product of logarithmic and power-type nonlinearity, Opuscula Math., 40 (2020), 111-130.  doi: 10.7494/OpMath.2020.40.1.111.  Google Scholar [16] W. Lian, J. Wang and R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differ. Equations, 269 (2020), 4914-4959.  doi: 10.1016/j.jde.2020.03.047.  Google Scholar [17] W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613-632.  doi: 10.1515/anona-2020-0016.  Google Scholar [18] M. Liao, Q. Liu and H. Ye, Global existence and blow-up of weak solutions for a class of fractional $p$-Laplacian evolution equations, Adv. Nonlinear Anal., 9 (2020), 1569-1591.  doi: 10.1515/anona-2020-0066.  Google Scholar [19] G. Liu, The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term, Electron. Res. Arch., 28 (2020), 263-289.  doi: 10.3934/era.2020016.  Google Scholar [20] X. Liu and J. Zhou, Initial-boundary value problem for a fourth-order plate equation with hardy-hénon potential and polynomial nonlinearity, Electron. Res. Arch., 28 (2020), 599-625.  doi: 10.3934/era.2020032.  Google Scholar [21] M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations, Math. Z., 214 (1993), 325-342.  doi: 10.1007/BF02572407.  Google Scholar [22] L. E. Payne and D. H. Sattinger, Sadle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar [23] D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar [24] E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Ration. Mech. Anal., 149 (1999), 155-182.  doi: 10.1007/s002050050171.  Google Scholar [25] X. Wang, Y. Chen, Y. Yang, J. Li and R. Xu, Kirchhoff-type system with linear weak damping and logarithmic nonlinearities, Nonlinear Anal. Theory Methods Appl., 188 (2019), 475-499.  doi: 10.1016/j.na.2019.06.019.  Google Scholar [26] X. Wang and R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261-288.  doi: 10.1515/anona-2020-0141.  Google Scholar [27] R. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Quart. Appl. Math., 68 (2010), 459-468.  doi: 10.1090/S0033-569X-2010-01197-0.  Google Scholar [28] R. Xu and Y. Niu, Addendum to ''global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations'', [J. Func. Anal. 264 (12) (2013), 2732–2763], J. Funct. Anal., 270 (2016), 4039-4041.  doi: 10.1016/j.jfa.2016.02.026.  Google Scholar [29] R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar [30] R. Xu, X. Wang, Y. Yang and S. Chen, Global solutions and finite time blow-up for fourth order nonlinear damped wave equation, J. Math. Phys., 59 (2018), 061503, 27 pp. doi: 10.1063/1.5006728.  Google Scholar [31] Y. Yang and R. Xu, Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up, Commun. Pure Appl. Anal., 8 (2019), 1351-1358.  doi: 10.3934/cpaa.2019065.  Google Scholar [32] M. Zhang, Q. Zhao, Y. Liu and W. Li, Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition, Electron. Res. Arch., 28 (2020), 369-381.  doi: 10.3934/era.2020021.  Google Scholar [33] J. Zhou, Initial boundary value problem for a inhomogeneous pseudo-parabolic equation, Electron. Res. Arch., 28 (2020), 67-90.  doi: 10.3934/era.2020005.  Google Scholar
 [1] Akmel Dé Godefroy. Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 117-137. doi: 10.3934/dcds.2015.35.117 [2] Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072 [3] Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671 [4] Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677 [5] Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 [6] Jinxing Liu, Xiongrui Wang, Jun Zhou, Huan Zhang. Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4321-4335. doi: 10.3934/dcdss.2021108 [7] Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170 [8] Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023 [9] Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4337-4366. doi: 10.3934/dcdss.2021121 [10] Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016 [11] Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843 [12] Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 [13] Mohammad Kafini. On the blow-up of the Cauchy problem of higher-order nonlinear viscoelastic wave equation. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021093 [14] Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058 [15] Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633 [16] Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042 [17] Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169 [18] Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 [19] Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations & Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019 [20] Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

2020 Impact Factor: 2.425

Article outline