• Previous Article
    Long-time behavior for fourth-order wave equations with strain term and nonlinear weak damping term
  • DCDS-S Home
  • This Issue
  • Next Article
    Existence and blow-up of solutions for fractional wave equations of Kirchhoff type with viscoelasticity
December  2021, 14(12): 4631-4642. doi: 10.3934/dcdss.2021136

Sharp condition of global well-posedness for inhomogeneous nonlinear Schrödinger equation

College of Mathematical Sciences, Harbin Engineering University, No. 145 Nantong Street, Harbin 150001, China

* Corresponding author: Chao Yang

Received  September 2021 Revised  October 2021 Published  December 2021 Early access  November 2021

This paper studies the Cauchy problem of Schrödinger equation with inhomogeneous nonlinear term $ V(x)|\varphi|^{p-1}\varphi $ in $ \mathbb{R}^n $. For the case $ p>1+\frac{4(1+\varepsilon_0)}{n} (0<\varepsilon_0<\frac{2}{n-2}) $, by introducing a potential well, we obtain some invariant sets of solution and give a sharp condition of global existence and finite time blowup of solution; for the case $ p<1+\frac{4}{n} $, we obtain the global existence of solution for any initial data in $ H^1 (\mathbb{R}^n) $.

Citation: Chao Yang. Sharp condition of global well-posedness for inhomogeneous nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4631-4642. doi: 10.3934/dcdss.2021136
References:
[1]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10, New York University, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[2]

A. de Bouard and R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Ann. Henri Poincaré, 6 (2005), 1157-1177.  doi: 10.1007/s00023-005-0236-6.  Google Scholar

[3]

G. Fibich and X.-P. Wang, Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Physica. D., 175 (2003), 96-108.  doi: 10.1016/S0167-2789(02)00626-7.  Google Scholar

[4]

R. Fukuizumi and M. Ohta, Instability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, J. Math. Kyoto Univ., 45 (2005), 145-158.  doi: 10.1215/kjm/1250282971.  Google Scholar

[5]

T. S. Gill, Optical guiding of laser beam in nonuniform plasma, Pramana, 55 (2000), 835-842.  doi: 10.1007/s12043-000-0051-z.  Google Scholar

[6]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[7]

H. Guo and T. Wang, A note on sign-changing solutions for the Schrödinger Poisson systerm, Electron. Res. Arch., 28 (2020), 195-203.  doi: 10.3934/era.2020013.  Google Scholar

[8]

L. Huang and J. Chen, Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system, Electron. Res. Arch., 28 (2020), 383-404.  doi: 10.3934/era.2020022.  Google Scholar

[9]

T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaé Phys. Théor., 46 (1987), 113-129.   Google Scholar

[10]

T. Kato, Nonlinear Schrödinger equations, Schrödinger Operators (Sonderborg, 1988), 218–263. Lecture Notes in Physics, 345, Springer, Berlin, (1989). doi: 10.1007/3-540-51783-9_22.  Google Scholar

[11]

Y. LiuX.-P. Wang and K. Wang, Instability of standing waves of the Schrödinger equation with inhomogeneous nonlinearity, Trans. Amer. Math. Soc., 358 (2006), 2105-2122.  doi: 10.1090/S0002-9947-05-03763-3.  Google Scholar

[12]

F. Merle, Nonexistence of minimal blow-up solutions of equations iut = ∆uk(x)|u|4/N u in RN, Ann. Inst. H. Poincaré Phys. Théor., 64 (1996), 33-85.   Google Scholar

[13]

P. Y. H. PangH. Tang and Y. Wang, Blow-up solutions of inhomogeneous nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 26 (2006), 137-169.  doi: 10.1007/s00526-005-0362-5.  Google Scholar

[14]

Y. Wang, Global existence and blow up of solutions for the inhomogenoeous nonlinear Schrödinger equation in $\mathbb{R}^2$, J. Math. Anal. Appl., 338 (2008), 1008-1019.  doi: 10.1016/j.jmaa.2007.05.057.  Google Scholar

[15]

M. Zhang and M. S. Ahmed, Sharp conditions of global existence for nonlinear Schrödinger equation with a harmonic potential, Adv. Nonlinear Anal., 9 (2020), 882-894.  doi: 10.1515/anona-2020-0031.  Google Scholar

[16]

X. Zhao and W. Yan, Existence of standing waves for quasi-linear Schrödinger equations on $T^n$, Adv. Nonlinear Anal., 9 (2020), 978-993.  doi: 10.1515/anona-2020-0038.  Google Scholar

show all references

References:
[1]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10, New York University, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[2]

A. de Bouard and R. Fukuizumi, Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Ann. Henri Poincaré, 6 (2005), 1157-1177.  doi: 10.1007/s00023-005-0236-6.  Google Scholar

[3]

G. Fibich and X.-P. Wang, Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Physica. D., 175 (2003), 96-108.  doi: 10.1016/S0167-2789(02)00626-7.  Google Scholar

[4]

R. Fukuizumi and M. Ohta, Instability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, J. Math. Kyoto Univ., 45 (2005), 145-158.  doi: 10.1215/kjm/1250282971.  Google Scholar

[5]

T. S. Gill, Optical guiding of laser beam in nonuniform plasma, Pramana, 55 (2000), 835-842.  doi: 10.1007/s12043-000-0051-z.  Google Scholar

[6]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[7]

H. Guo and T. Wang, A note on sign-changing solutions for the Schrödinger Poisson systerm, Electron. Res. Arch., 28 (2020), 195-203.  doi: 10.3934/era.2020013.  Google Scholar

[8]

L. Huang and J. Chen, Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system, Electron. Res. Arch., 28 (2020), 383-404.  doi: 10.3934/era.2020022.  Google Scholar

[9]

T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaé Phys. Théor., 46 (1987), 113-129.   Google Scholar

[10]

T. Kato, Nonlinear Schrödinger equations, Schrödinger Operators (Sonderborg, 1988), 218–263. Lecture Notes in Physics, 345, Springer, Berlin, (1989). doi: 10.1007/3-540-51783-9_22.  Google Scholar

[11]

Y. LiuX.-P. Wang and K. Wang, Instability of standing waves of the Schrödinger equation with inhomogeneous nonlinearity, Trans. Amer. Math. Soc., 358 (2006), 2105-2122.  doi: 10.1090/S0002-9947-05-03763-3.  Google Scholar

[12]

F. Merle, Nonexistence of minimal blow-up solutions of equations iut = ∆uk(x)|u|4/N u in RN, Ann. Inst. H. Poincaré Phys. Théor., 64 (1996), 33-85.   Google Scholar

[13]

P. Y. H. PangH. Tang and Y. Wang, Blow-up solutions of inhomogeneous nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 26 (2006), 137-169.  doi: 10.1007/s00526-005-0362-5.  Google Scholar

[14]

Y. Wang, Global existence and blow up of solutions for the inhomogenoeous nonlinear Schrödinger equation in $\mathbb{R}^2$, J. Math. Anal. Appl., 338 (2008), 1008-1019.  doi: 10.1016/j.jmaa.2007.05.057.  Google Scholar

[15]

M. Zhang and M. S. Ahmed, Sharp conditions of global existence for nonlinear Schrödinger equation with a harmonic potential, Adv. Nonlinear Anal., 9 (2020), 882-894.  doi: 10.1515/anona-2020-0031.  Google Scholar

[16]

X. Zhao and W. Yan, Existence of standing waves for quasi-linear Schrödinger equations on $T^n$, Adv. Nonlinear Anal., 9 (2020), 978-993.  doi: 10.1515/anona-2020-0038.  Google Scholar

[1]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[2]

Masahoto Ohta, Grozdena Todorova. Remarks on global existence and blowup for damped nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2009, 23 (4) : 1313-1325. doi: 10.3934/dcds.2009.23.1313

[3]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[4]

Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082

[5]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[6]

César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535

[7]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[8]

Jianqing Chen, Boling Guo. Sharp global existence and blowing up results for inhomogeneous Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 357-367. doi: 10.3934/dcdsb.2007.8.357

[9]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[10]

Xuan Liu, Ting Zhang. $ H^2 $ blowup result for a Schrödinger equation with nonlinear source term. Electronic Research Archive, 2020, 28 (2) : 777-794. doi: 10.3934/era.2020039

[11]

Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050

[12]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[13]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[14]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[15]

Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010

[16]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[17]

Xuan Liu, Ting Zhang. Local well-posedness and finite time blowup for fourth-order Schrödinger equation with complex coefficient. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021156

[18]

Thomas Bartsch, Zhongwei Tang. Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 7-26. doi: 10.3934/dcds.2013.33.7

[19]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[20]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (46)
  • HTML views (52)
  • Cited by (0)

Other articles
by authors

[Back to Top]