doi: 10.3934/dcdss.2021139
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Boundary stabilization for a star-shaped network of variable coefficients strings linked by a point mass

University of Tunis El Manar, Faculty of Sciences of Tunis, Tunisia

Received  July 2021 Revised  September 2021 Early access November 2021

This study is concerned with the pointwise stabilization for a star-shaped network of $ N $ variable coefficients strings connected at the common node by a point mass and subject to boundary feedback dampings at all extreme nodes. It is shown that the closed-loop system has a sequence of generalized eigenfunctions which forms a Riesz basis for the state Hilbert space. As a consequence, the spectrum-determined growth condition fulfills. In the meanwhile, the asymptotic expression of the spectrum is presented, and the exponential stability of the system is obtained by giving the optimal decay rate. We prove also that a phenomenon of lack of uniform stability occurs in the absence of damper at one extreme node. This paper reconfirmed the main stability results given by Hansen and Zuazua [SIAM J. Control Optim., 33 (1995), 1357-1391] in a very particular case.

Citation: Walid Boughamda. Boundary stabilization for a star-shaped network of variable coefficients strings linked by a point mass. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021139
References:
[1]

N. Akhiezer and I. Glazman, Theory of Linear Operators in Hilbert Space, vol. 9, 10 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1981.  Google Scholar

[2]

K. AmmariA. Henrot and M. Tucsnak, Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string, Asymptotic Analysis, 28 (2001), 215-240.   Google Scholar

[3]

K. AmmariA. Henrot and M. Tucsnak, Optimal location of the actuator for the pointwise stabilization of a string, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, 330 (2000), 275-280.  doi: 10.1016/S0764-4442(00)00113-0.  Google Scholar

[4]

K. AmmariM. Jellouli and M. Khenissi, Stabilization of generic trees of strings, J. Dyn. Contin. Syst., 11 (2005), 177-193.  doi: 10.1007/s10883-005-4169-7.  Google Scholar

[5]

K. Ammari and M. Jellouli, Remark in stabilization of tree-shaped networks of strings, Appl. Maths., 52 (2007), 327-343.  doi: 10.1007/s10492-007-0018-1.  Google Scholar

[6]

K. Ammari and M. Jellouli, Stabilization of star-shaped networks of strings, Differ. Integr. Equ., 17 (2004), 1395-1410.   Google Scholar

[7]

K. AmmariZ. Liu and F. Shel, Stability of the wave equations on a tree with local Kelvin–Voigt damping, Semigroup Forum, 100 (2020), 364-382.  doi: 10.1007/s00233-019-10064-7.  Google Scholar

[8]

K. Ammari and D. Mercier, Boundary feedback stabilization of a chain of serially connected strings, Evol. Equ. Control Theory, 4 (2015), 1-19.  doi: 10.3934/eect.2015.4.1.  Google Scholar

[9]

K. AmmariD. Mercier and V. Régnier, Spectral analysis of the Schrödinger operator on binary tree-shaped networks and applications, J. Differ. Equ., 259 (2015), 6923-6959.  doi: 10.1016/j.jde.2015.08.017.  Google Scholar

[10]

K. AmmariF. Shel and M. Vanninathan, Feedback stabilization of a simplified model of fluid-structure interaction on a tree, Asymptotic Analysis, 103 (2017), 33-55.  doi: 10.3233/ASY-171418.  Google Scholar

[11]

R. AsselM. Jellouli and M. Khenissi, Optimal decay rate for the local energy of a unbounded network, J. Differ. Equ., 261 (2016), 4030-4054.  doi: 10.1016/j.jde.2016.06.016.  Google Scholar

[12]

T. K. AugustinM. E. Patrice and T. M. Mathurin, Stabilization and Riesz basis property for an overhead crane model with feedback in velocity and rotating velocity, Journal of Nonlinear Analysis and Application, 2014 (2014), 1-14.  doi: 10.5899/2014/jnaa-00184.  Google Scholar

[13]

S. Avdonin abd J. Edward, Exact controllability for string with attached masses, SIAM J. Control Optim., 56 (2018), 945-980.  doi: 10.1137/15M1029333.  Google Scholar

[14]

J. Ben Amara and E. Beldi, Boundary controllability of two vibrating strings connected by a point mass with variable coefficients, SIAM J. Control Optim., 57 (2019), 3360-3387.  doi: 10.1137/16M1100496.  Google Scholar

[15]

J. Ben Amara and W. Boughamda, Exponential stability of two strings under joint damping with variable coefficients, Syst. Cont. Lett., 141 (2020), 104709.  doi: 10.1016/j.sysconle.2020.104709.  Google Scholar

[16]

J. Ben Amara and W. Boughamda, Riesz basis generation and boundary stabilization of two strings connected by a point mass with variable coefficients, Math. Meth. Appl. Sci., 43 (2020), 2322-2336.  doi: 10.1002/mma.6043.  Google Scholar

[17]

W. Boughamda, On the pointwise stability of a tree-shaped network of variable coefficients strings under joint damping, preprint. Google Scholar

[18]

Y. ChenZ. HanG. Xu and D. Liu, Exponential stability of string system with variable coefficients under non-collocated feedback controls, Asian Journal of Control, 13 (2011), 148-163.  doi: 10.1002/asjc.255.  Google Scholar

[19]

J. Conway, Functions of One Complex Variable I, $2^{nd}$ edition, Graduate Texts in Mathematics, 11, Springer-Verlag, New York-Berlin, 1978. doi: 10.1007/978-1-4612-6313-5.  Google Scholar

[20]

R. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, vol. 21 of Texts in Applied Mathematics, Springer, New York, NY, USA, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[21]

M. V. Fedoryuk, Asymptotic Analysis: Linear Ordinary Differential Equations, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-58016-1.  Google Scholar

[22]

I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Trans. Math. Monogr. 18, AMS, Providence, RI. 1969.  Google Scholar

[23]

P. Grabowski, Well-posedness and stability analysis of hybrid feedback systems using Shkalikov's theory, Opuscula Mathematica, 26 (2006), 45-97.   Google Scholar

[24]

B. Z. Guo, On the boundary control of a hybrid system with variable coefficients, Journal of Optimization Theory and Application, 114 (2002), 373-395.  doi: 10.1023/A:1016039819069.  Google Scholar

[25]

B. Z. Guo, Riesz basis approach to the stabilization of a flexible beam with a tip mass, SIAM J. Control Optim., 39 (2001), 1736-1747.  doi: 10.1137/S0363012999354880.  Google Scholar

[26]

B. Z. Guo and J. M. Wang, Control of Wave and Beam PDEs: The Riesz Basis Approach, 596 Springer-Verlag, Cham, 2019. doi: 10.1007/978-3-030-12481-6.  Google Scholar

[27]

B. Z. Guo and G. Q. Xu, Expansion of solution in terms of generalized eigenfunctions for a hyperbolic system with static boundary condition, Journal of Functional Analysis, 231 (2006), 245-268.  doi: 10.1016/j.jfa.2005.02.006.  Google Scholar

[28]

Y. N. Guo and G. Q. Xu, Exponential stabilisation of a tree-shaped network of strings with variable coefficients, Glasgow Math. J., 53 (2011), 481-499.  doi: 10.1017/S0017089511000085.  Google Scholar

[29]

B. Z. Guo and R. Yu, The Riesz basis property of discrete operators and application to a Euler-Bernoulli beam equation with boundary linear feedback control, IMA Journal of Mathematical Control and Information, 18 (2001), 241-251.  doi: 10.1093/imamci/18.2.241.  Google Scholar

[30]

Z. J. Han and G. Q. Xu, Exponential decay in non-uniform porous-thermo-elasticity model of Lord-Shulman type, Discrete Continuous Dynam. Systems - B, 17 (2012), 57-77.  doi: 10.3934/dcdsb.2012.17.57.  Google Scholar

[31]

Z. J. Han and G. Q. Xu, Dynamical behavior of a hybrid system of nonhomogeneous Timoshenko beam with partial non-collocated inputs, Journal of Dynamical and Control Systems, 17 (2011), 77-121.  doi: 10.1007/s10883-011-9111-6.  Google Scholar

[32]

S. Hansen and E. Zuazua, Exact controllability and stabilization of a vibrating string with an interior point mass, SIAM J. Control Optim., 33 (1995), 1357-1391.  doi: 10.1137/S0363012993248347.  Google Scholar

[33]

E. B. Lee and Y. C. You, Stabilization of a hybrid (string/point mass) system, Proc. Fifth Int. Conf. Syst. Eng., (Dayton, Ohio, EUA), (1987). Google Scholar

[34]

E. B. Lee and Y. You, Stabilization of a vibrating string linked by point masses, Control of Boundaries and Stabilization, Lecture Notes in Control and Information Sciences, 125 (1989), 177-198.  doi: 10.1007/BFb0043361.  Google Scholar

[35]

B. M. Levitan and I. C. Sargsjan, Introduction to Spectral Theory, AMS, 1975.  Google Scholar

[36]

W. Littman and S. W. Taylor, Boundary feedback stabilization of a vibrating string with an interior point mass, Nonlinear Problems in Mathematical Physics and Related Topic I, in: Int. Math. Ser., 1 (2002), 271-287.  doi: 10.1007/978-1-4615-0777-2_16.  Google Scholar

[37]

K. S. LiuF. L. Huang and G. Chen, Exponential stability analysis of a long chain of coupled vibrating strings with dissipative linkage, SIAM J. Appl. Math., 49 (1989), 1694-1707.  doi: 10.1137/0149102.  Google Scholar

[38]

Y. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math., 88 (1988), 37-42.  doi: 10.4064/sm-88-1-37-42.  Google Scholar

[39]

A. Mifdal, Stabilisation uniforme d'un système hybride, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, 324 (1997), 37-42.  doi: 10.1016/S0764-4442(97)80100-0.  Google Scholar

[40]

Ö. MorgülB. P. Rao and F. Conrad, On the stabilization of a cable with a tip mass, IEEE Transactions on Automatic Control, 39 (1994), 2140-2145.  doi: 10.1109/9.328811.  Google Scholar

[41]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[42]

A. A. Shkalikov, Boundary problems for ordinary differential equations with parameter in the boundary conditions, Journal of Mathematical Sciences, 33 (1986), 1311-1342.  doi: 10.1007/BF01084754.  Google Scholar

[43]

G. Q. Xu and B. Z. Guo, Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation, SIAM J. Control Optim., 42 (2003), 966-984.  doi: 10.1137/S0363012901400081.  Google Scholar

[44]

G. Q. Xu, Stabilization of string system with linear boundary feedback, Nonlinear Analysis: Hybrid Systems, 1 (2007), 383-397.  doi: 10.1016/j.nahs.2006.07.003.  Google Scholar

[45]

G. Q. Xu and S. Yung, The expansion of semigroup and a Riesz basis criterion, J. Differ. Equ., 210 (2005), 1-24.  doi: 10.1016/j.jde.2004.09.015.  Google Scholar

[46] R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, 1980.   Google Scholar

show all references

References:
[1]

N. Akhiezer and I. Glazman, Theory of Linear Operators in Hilbert Space, vol. 9, 10 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1981.  Google Scholar

[2]

K. AmmariA. Henrot and M. Tucsnak, Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string, Asymptotic Analysis, 28 (2001), 215-240.   Google Scholar

[3]

K. AmmariA. Henrot and M. Tucsnak, Optimal location of the actuator for the pointwise stabilization of a string, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, 330 (2000), 275-280.  doi: 10.1016/S0764-4442(00)00113-0.  Google Scholar

[4]

K. AmmariM. Jellouli and M. Khenissi, Stabilization of generic trees of strings, J. Dyn. Contin. Syst., 11 (2005), 177-193.  doi: 10.1007/s10883-005-4169-7.  Google Scholar

[5]

K. Ammari and M. Jellouli, Remark in stabilization of tree-shaped networks of strings, Appl. Maths., 52 (2007), 327-343.  doi: 10.1007/s10492-007-0018-1.  Google Scholar

[6]

K. Ammari and M. Jellouli, Stabilization of star-shaped networks of strings, Differ. Integr. Equ., 17 (2004), 1395-1410.   Google Scholar

[7]

K. AmmariZ. Liu and F. Shel, Stability of the wave equations on a tree with local Kelvin–Voigt damping, Semigroup Forum, 100 (2020), 364-382.  doi: 10.1007/s00233-019-10064-7.  Google Scholar

[8]

K. Ammari and D. Mercier, Boundary feedback stabilization of a chain of serially connected strings, Evol. Equ. Control Theory, 4 (2015), 1-19.  doi: 10.3934/eect.2015.4.1.  Google Scholar

[9]

K. AmmariD. Mercier and V. Régnier, Spectral analysis of the Schrödinger operator on binary tree-shaped networks and applications, J. Differ. Equ., 259 (2015), 6923-6959.  doi: 10.1016/j.jde.2015.08.017.  Google Scholar

[10]

K. AmmariF. Shel and M. Vanninathan, Feedback stabilization of a simplified model of fluid-structure interaction on a tree, Asymptotic Analysis, 103 (2017), 33-55.  doi: 10.3233/ASY-171418.  Google Scholar

[11]

R. AsselM. Jellouli and M. Khenissi, Optimal decay rate for the local energy of a unbounded network, J. Differ. Equ., 261 (2016), 4030-4054.  doi: 10.1016/j.jde.2016.06.016.  Google Scholar

[12]

T. K. AugustinM. E. Patrice and T. M. Mathurin, Stabilization and Riesz basis property for an overhead crane model with feedback in velocity and rotating velocity, Journal of Nonlinear Analysis and Application, 2014 (2014), 1-14.  doi: 10.5899/2014/jnaa-00184.  Google Scholar

[13]

S. Avdonin abd J. Edward, Exact controllability for string with attached masses, SIAM J. Control Optim., 56 (2018), 945-980.  doi: 10.1137/15M1029333.  Google Scholar

[14]

J. Ben Amara and E. Beldi, Boundary controllability of two vibrating strings connected by a point mass with variable coefficients, SIAM J. Control Optim., 57 (2019), 3360-3387.  doi: 10.1137/16M1100496.  Google Scholar

[15]

J. Ben Amara and W. Boughamda, Exponential stability of two strings under joint damping with variable coefficients, Syst. Cont. Lett., 141 (2020), 104709.  doi: 10.1016/j.sysconle.2020.104709.  Google Scholar

[16]

J. Ben Amara and W. Boughamda, Riesz basis generation and boundary stabilization of two strings connected by a point mass with variable coefficients, Math. Meth. Appl. Sci., 43 (2020), 2322-2336.  doi: 10.1002/mma.6043.  Google Scholar

[17]

W. Boughamda, On the pointwise stability of a tree-shaped network of variable coefficients strings under joint damping, preprint. Google Scholar

[18]

Y. ChenZ. HanG. Xu and D. Liu, Exponential stability of string system with variable coefficients under non-collocated feedback controls, Asian Journal of Control, 13 (2011), 148-163.  doi: 10.1002/asjc.255.  Google Scholar

[19]

J. Conway, Functions of One Complex Variable I, $2^{nd}$ edition, Graduate Texts in Mathematics, 11, Springer-Verlag, New York-Berlin, 1978. doi: 10.1007/978-1-4612-6313-5.  Google Scholar

[20]

R. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, vol. 21 of Texts in Applied Mathematics, Springer, New York, NY, USA, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[21]

M. V. Fedoryuk, Asymptotic Analysis: Linear Ordinary Differential Equations, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-58016-1.  Google Scholar

[22]

I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Trans. Math. Monogr. 18, AMS, Providence, RI. 1969.  Google Scholar

[23]

P. Grabowski, Well-posedness and stability analysis of hybrid feedback systems using Shkalikov's theory, Opuscula Mathematica, 26 (2006), 45-97.   Google Scholar

[24]

B. Z. Guo, On the boundary control of a hybrid system with variable coefficients, Journal of Optimization Theory and Application, 114 (2002), 373-395.  doi: 10.1023/A:1016039819069.  Google Scholar

[25]

B. Z. Guo, Riesz basis approach to the stabilization of a flexible beam with a tip mass, SIAM J. Control Optim., 39 (2001), 1736-1747.  doi: 10.1137/S0363012999354880.  Google Scholar

[26]

B. Z. Guo and J. M. Wang, Control of Wave and Beam PDEs: The Riesz Basis Approach, 596 Springer-Verlag, Cham, 2019. doi: 10.1007/978-3-030-12481-6.  Google Scholar

[27]

B. Z. Guo and G. Q. Xu, Expansion of solution in terms of generalized eigenfunctions for a hyperbolic system with static boundary condition, Journal of Functional Analysis, 231 (2006), 245-268.  doi: 10.1016/j.jfa.2005.02.006.  Google Scholar

[28]

Y. N. Guo and G. Q. Xu, Exponential stabilisation of a tree-shaped network of strings with variable coefficients, Glasgow Math. J., 53 (2011), 481-499.  doi: 10.1017/S0017089511000085.  Google Scholar

[29]

B. Z. Guo and R. Yu, The Riesz basis property of discrete operators and application to a Euler-Bernoulli beam equation with boundary linear feedback control, IMA Journal of Mathematical Control and Information, 18 (2001), 241-251.  doi: 10.1093/imamci/18.2.241.  Google Scholar

[30]

Z. J. Han and G. Q. Xu, Exponential decay in non-uniform porous-thermo-elasticity model of Lord-Shulman type, Discrete Continuous Dynam. Systems - B, 17 (2012), 57-77.  doi: 10.3934/dcdsb.2012.17.57.  Google Scholar

[31]

Z. J. Han and G. Q. Xu, Dynamical behavior of a hybrid system of nonhomogeneous Timoshenko beam with partial non-collocated inputs, Journal of Dynamical and Control Systems, 17 (2011), 77-121.  doi: 10.1007/s10883-011-9111-6.  Google Scholar

[32]

S. Hansen and E. Zuazua, Exact controllability and stabilization of a vibrating string with an interior point mass, SIAM J. Control Optim., 33 (1995), 1357-1391.  doi: 10.1137/S0363012993248347.  Google Scholar

[33]

E. B. Lee and Y. C. You, Stabilization of a hybrid (string/point mass) system, Proc. Fifth Int. Conf. Syst. Eng., (Dayton, Ohio, EUA), (1987). Google Scholar

[34]

E. B. Lee and Y. You, Stabilization of a vibrating string linked by point masses, Control of Boundaries and Stabilization, Lecture Notes in Control and Information Sciences, 125 (1989), 177-198.  doi: 10.1007/BFb0043361.  Google Scholar

[35]

B. M. Levitan and I. C. Sargsjan, Introduction to Spectral Theory, AMS, 1975.  Google Scholar

[36]

W. Littman and S. W. Taylor, Boundary feedback stabilization of a vibrating string with an interior point mass, Nonlinear Problems in Mathematical Physics and Related Topic I, in: Int. Math. Ser., 1 (2002), 271-287.  doi: 10.1007/978-1-4615-0777-2_16.  Google Scholar

[37]

K. S. LiuF. L. Huang and G. Chen, Exponential stability analysis of a long chain of coupled vibrating strings with dissipative linkage, SIAM J. Appl. Math., 49 (1989), 1694-1707.  doi: 10.1137/0149102.  Google Scholar

[38]

Y. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math., 88 (1988), 37-42.  doi: 10.4064/sm-88-1-37-42.  Google Scholar

[39]

A. Mifdal, Stabilisation uniforme d'un système hybride, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, 324 (1997), 37-42.  doi: 10.1016/S0764-4442(97)80100-0.  Google Scholar

[40]

Ö. MorgülB. P. Rao and F. Conrad, On the stabilization of a cable with a tip mass, IEEE Transactions on Automatic Control, 39 (1994), 2140-2145.  doi: 10.1109/9.328811.  Google Scholar

[41]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[42]

A. A. Shkalikov, Boundary problems for ordinary differential equations with parameter in the boundary conditions, Journal of Mathematical Sciences, 33 (1986), 1311-1342.  doi: 10.1007/BF01084754.  Google Scholar

[43]

G. Q. Xu and B. Z. Guo, Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation, SIAM J. Control Optim., 42 (2003), 966-984.  doi: 10.1137/S0363012901400081.  Google Scholar

[44]

G. Q. Xu, Stabilization of string system with linear boundary feedback, Nonlinear Analysis: Hybrid Systems, 1 (2007), 383-397.  doi: 10.1016/j.nahs.2006.07.003.  Google Scholar

[45]

G. Q. Xu and S. Yung, The expansion of semigroup and a Riesz basis criterion, J. Differ. Equ., 210 (2005), 1-24.  doi: 10.1016/j.jde.2004.09.015.  Google Scholar

[46] R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, 1980.   Google Scholar
Figure 1.  A star-shaped network
[1]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

[2]

Jamel Ben Amara, Emna Beldi. Simultaneous controllability of two vibrating strings with variable coefficients. Evolution Equations & Control Theory, 2019, 8 (4) : 687-694. doi: 10.3934/eect.2019032

[3]

Scott W. Hansen, Rajeev Rajaram. Riesz basis property and related results for a Rao-Nakra sandwich beam. Conference Publications, 2005, 2005 (Special) : 365-375. doi: 10.3934/proc.2005.2005.365

[4]

Fatiha Alabau-Boussouira, Vincent Perrollaz, Lionel Rosier. Finite-time stabilization of a network of strings. Mathematical Control & Related Fields, 2015, 5 (4) : 721-742. doi: 10.3934/mcrf.2015.5.721

[5]

Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations & Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1

[6]

Abdallah Ben Abdallah, Farhat Shel. Exponential stability of a general network of 1-d thermoelastic rods. Mathematical Control & Related Fields, 2012, 2 (1) : 1-16. doi: 10.3934/mcrf.2012.2.1

[7]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[8]

Gennady Bachman. Exponential sums with multiplicative coefficients. Electronic Research Announcements, 1999, 5: 128-135.

[9]

Sergei A. Avdonin, Boris P. Belinskiy. On the basis properties of the functions arising in the boundary control problem of a string with a variable tension. Conference Publications, 2005, 2005 (Special) : 40-49. doi: 10.3934/proc.2005.2005.40

[10]

Suzana Antunović, Tonči Kokan, Tanja Vojković, Damir Vukičević. Exponential generalised network descriptors. Advances in Mathematics of Communications, 2019, 13 (3) : 405-420. doi: 10.3934/amc.2019026

[11]

Christian Pötzsche, Stefan Siegmund, Fabian Wirth. A spectral characterization of exponential stability for linear time-invariant systems on time scales. Discrete & Continuous Dynamical Systems, 2003, 9 (5) : 1223-1241. doi: 10.3934/dcds.2003.9.1223

[12]

Jeremy Levesley, Xinping Sun, Fahd Jarad, Alexander Kushpel. Interpolation of exponential-type functions on a uniform grid by shifts of a basis function. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2399-2416. doi: 10.3934/dcdss.2020403

[13]

Luciano Pandolfi. Riesz systems and moment method in the study of viscoelasticity in one space dimension. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1487-1510. doi: 10.3934/dcdsb.2010.14.1487

[14]

Kaïs Ammari, Denis Mercier, Virginie Régnier, Julie Valein. Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings. Communications on Pure & Applied Analysis, 2012, 11 (2) : 785-807. doi: 10.3934/cpaa.2012.11.785

[15]

Lu Yang, Guangsheng Wei, Vyacheslav Pivovarchik. Direct and inverse spectral problems for a star graph of Stieltjes strings damped at a pendant vertex. Inverse Problems & Imaging, 2021, 15 (2) : 257-270. doi: 10.3934/ipi.2020063

[16]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[17]

Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial & Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819

[18]

Fágner D. Araruna, Flank D. M. Bezerra, Milton L. Oliveira. Rate of attraction for a semilinear thermoelastic system with variable coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3211-3226. doi: 10.3934/dcdsb.2018316

[19]

Zhong-Jie Han, Gen-Qi Xu. Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks. Networks & Heterogeneous Media, 2010, 5 (2) : 315-334. doi: 10.3934/nhm.2010.5.315

[20]

Thomas Y. Hou, Pengfei Liu. Optimal local multi-scale basis functions for linear elliptic equations with rough coefficients. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 4451-4476. doi: 10.3934/dcds.2016.36.4451

2020 Impact Factor: 2.425

Article outline

Figures and Tables

[Back to Top]