• Previous Article
    Blowing-up solutions of differential equations with shifts: A survey
  • DCDS-S Home
  • This Issue
  • Next Article
    WITHDRAWN: Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution
doi: 10.3934/dcdss.2021140
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Asymptotic behavior of nonlocal partial differential equations with long time memory

1. 

Departmento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, c/ Tarfia s/n, 41012 Sevilla, Spain

2. 

Centro de Investigación Operativa, Universidad Miguel Hernández de Elche, Avda. de la Universidad, s/n, 03202-Elche, Spain

* Corresponding author: Tomás Caraballo

Dedicated to Georg Hetzer on occasion of his 75th birthday

Received  June 2021 Revised  September 2021 Early access November 2021

Fund Project: The research has been partially supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIU), Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) under the project PGC2018-096540-B-I00, and by Junta de Andalucía (Consejería de Economía y Conocimiento) and FEDER under projects US-1254251 and P18-FR-4509

In this paper, it is first addressed the well-posedness of weak solutions to a nonlocal partial differential equation with long time memory, which is carried out by exploiting the nowadays well-known technique used by Dafermos in the early 70's. Thanks to this Dafermos transformation, the original problem with memory is transformed into a non-delay one for which the standard theory of autonomous dynamical system can be applied. Thus, some results about the existence of global attractors for the transformed problem are {proved}. Particularly, when the initial values have higher regularity, the solutions of both problems (the original and the transformed ones) are equivalent. Nevertheless, the equivalence of global attractors for both problems is still unsolved due to the lack of enough regularity of solutions in the transformed problem. It is therefore proved the existence of global attractors of the transformed problem. Eventually, it is highlighted how to proceed to obtain meaningful results about the original problem, without performing any transformation, but working directly with the original delay problem.

Citation: Jiaohui Xu, Tomás Caraballo, José Valero. Asymptotic behavior of nonlocal partial differential equations with long time memory. Discrete and Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021140
References:
[1]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfußand and J. Valero, Global attractor for a non-autonomous integro-differential equation in materials with memory, Nonlinear Anal., 73 (2010), 183-201.  doi: 10.1016/j.na.2010.03.012.

[2]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.

[3]

M. Chipot and J. F. Rodrigues, On a class of nonlocal nonlinear elliptic problems, RAIRO Modél. Math. Anal. Numér., 26 (1992), 447-467.  doi: 10.1051/m2an/1992260304471.

[4]

M. Chipot and T. Savistka, Nonlocal $p$-Laplace equations depending on the $L^p$ norm of the gradient, Adv. Differential Equations, 19 (2014), 997-1020. 

[5]

M. ChipotV. Valente and G. V. Caffarelli, Remarks on a nonlocal problem involving the Dirichlet energy, Rend. Semin. Mat. Univ. Padova, 110 (2003), 199-220. 

[6]

M. ContiV. Pata and M. Squassina, Singular limit of differential systems with memory, Indiana Univ. Math. J., 1 (2006), 169-215.  doi: 10.1512/iumj.2006.55.2661.

[7]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[8]

J. Furter and M. Grinfeld, Local vs. nonlocal interactions in population dynamics, J. Math. Biol., 27 (1989), 65-80.  doi: 10.1007/BF00276081.

[9]

S. GattiM. Grasselli and V. Pata, Exponential attractors for a phased-field model with memory and quadratic nonlinearities, Indiana Univ. Math. J., 53 (2004), 719-753.  doi: 10.1512/iumj.2004.53.2413.

[10]

C. GiorgiV. Pata and A. Marzochi, Asymptotic behavior of a semilinear problem in heat conduction with memory, NoDEA Nonlinear Differential Equations Appl., 5 (1998), 333-354.  doi: 10.1007/s000300050049.

[11]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous dynamical systems with memory, Progr. Nonlinear Differential Equations Appl., 50 (2002), 155-178. 

[12]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[13]

Y. J. Li and Y. J. Wang, The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay, J. Differential Equations, 266 (2019), 3514-3558.  doi: 10.1016/j.jde.2018.09.009.

[14]

J. L. Lions, Quelques Méthodes de Résolutions des Problèm aux Limites Non Linéaires, Dunod Gauthier-Villars, Paris, 1969.

[15]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529. 

[16]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.

[17]

J. H. XuZ. C. Zhang and T. Caraballo, Non-autonomous nonlocal partial differential equations with delay and memory, J. Differential Equations, 270 (2021), 505-546.  doi: 10.1016/j.jde.2020.07.037.

show all references

References:
[1]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfußand and J. Valero, Global attractor for a non-autonomous integro-differential equation in materials with memory, Nonlinear Anal., 73 (2010), 183-201.  doi: 10.1016/j.na.2010.03.012.

[2]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.

[3]

M. Chipot and J. F. Rodrigues, On a class of nonlocal nonlinear elliptic problems, RAIRO Modél. Math. Anal. Numér., 26 (1992), 447-467.  doi: 10.1051/m2an/1992260304471.

[4]

M. Chipot and T. Savistka, Nonlocal $p$-Laplace equations depending on the $L^p$ norm of the gradient, Adv. Differential Equations, 19 (2014), 997-1020. 

[5]

M. ChipotV. Valente and G. V. Caffarelli, Remarks on a nonlocal problem involving the Dirichlet energy, Rend. Semin. Mat. Univ. Padova, 110 (2003), 199-220. 

[6]

M. ContiV. Pata and M. Squassina, Singular limit of differential systems with memory, Indiana Univ. Math. J., 1 (2006), 169-215.  doi: 10.1512/iumj.2006.55.2661.

[7]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[8]

J. Furter and M. Grinfeld, Local vs. nonlocal interactions in population dynamics, J. Math. Biol., 27 (1989), 65-80.  doi: 10.1007/BF00276081.

[9]

S. GattiM. Grasselli and V. Pata, Exponential attractors for a phased-field model with memory and quadratic nonlinearities, Indiana Univ. Math. J., 53 (2004), 719-753.  doi: 10.1512/iumj.2004.53.2413.

[10]

C. GiorgiV. Pata and A. Marzochi, Asymptotic behavior of a semilinear problem in heat conduction with memory, NoDEA Nonlinear Differential Equations Appl., 5 (1998), 333-354.  doi: 10.1007/s000300050049.

[11]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous dynamical systems with memory, Progr. Nonlinear Differential Equations Appl., 50 (2002), 155-178. 

[12]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[13]

Y. J. Li and Y. J. Wang, The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay, J. Differential Equations, 266 (2019), 3514-3558.  doi: 10.1016/j.jde.2018.09.009.

[14]

J. L. Lions, Quelques Méthodes de Résolutions des Problèm aux Limites Non Linéaires, Dunod Gauthier-Villars, Paris, 1969.

[15]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505-529. 

[16]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.

[17]

J. H. XuZ. C. Zhang and T. Caraballo, Non-autonomous nonlocal partial differential equations with delay and memory, J. Differential Equations, 270 (2021), 505-546.  doi: 10.1016/j.jde.2020.07.037.

[1]

Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041

[2]

Linghai Zhang. Long-time asymptotic behaviors of solutions of $N$-dimensional dissipative partial differential equations. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 1025-1042. doi: 10.3934/dcds.2002.8.1025

[3]

Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021

[4]

V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure and Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115

[5]

H. A. Erbay, S. Erbay, A. Erkip. Long-time existence of solutions to nonlocal nonlinear bidirectional wave equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2877-2891. doi: 10.3934/dcds.2019119

[6]

Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272

[7]

Jáuber Cavalcante Oliveira, Jardel Morais Pereira, Gustavo Perla Menzala. Long time dynamics of a multidimensional nonlinear lattice with memory. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2715-2732. doi: 10.3934/dcdsb.2015.20.2715

[8]

Kung-Ching Chang. In memory of professor Rouhuai Wang (1924-2001): A pioneering Chinese researcher in partial differential equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 571-575. doi: 10.3934/dcds.2016.36.571

[9]

Elena Bonetti, Elisabetta Rocca. Global existence and long-time behaviour for a singular integro-differential phase-field system. Communications on Pure and Applied Analysis, 2007, 6 (2) : 367-387. doi: 10.3934/cpaa.2007.6.367

[10]

Luisa Malaguti, Stefania Perrotta, Valentina Taddei. $ L^p $-exact controllability of partial differential equations with nonlocal terms. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021053

[11]

Tomás Caraballo, José Real, I. D. Chueshov. Pullback attractors for stochastic heat equations in materials with memory. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 525-539. doi: 10.3934/dcdsb.2008.9.525

[12]

Valeria Danese, Pelin G. Geredeli, Vittorino Pata. Exponential attractors for abstract equations with memory and applications to viscoelasticity. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2881-2904. doi: 10.3934/dcds.2015.35.2881

[13]

Jianbo Yuan, Shixuan Zhang, Yongqin Xie, Jiangwei Zhang. Attractors for a class of perturbed nonclassical diffusion equations with memory. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021261

[14]

Jie Tang, Ziqing Xie, Zhimin Zhang. The long time behavior of a spectral collocation method for delay differential equations of pantograph type. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 797-819. doi: 10.3934/dcdsb.2013.18.797

[15]

Ishak Alia. Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach. Mathematical Control and Related Fields, 2020, 10 (4) : 785-826. doi: 10.3934/mcrf.2020020

[16]

Eduard Feireisl. Long time behavior and attractors for energetically insulated fluid systems. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1587-1609. doi: 10.3934/dcds.2010.27.1587

[17]

Michael Dellnitz, Mirko Hessel-Von Molo, Adrian Ziessler. On the computation of attractors for delay differential equations. Journal of Computational Dynamics, 2016, 3 (1) : 93-112. doi: 10.3934/jcd.2016005

[18]

Marcio Antonio Jorge da Silva, Vando Narciso. Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping*. Evolution Equations and Control Theory, 2017, 6 (3) : 437-470. doi: 10.3934/eect.2017023

[19]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[20]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations and Control Theory, 2022, 11 (1) : 125-167. doi: 10.3934/eect.2020105

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (310)
  • HTML views (215)
  • Cited by (0)

Other articles
by authors

[Back to Top]