• Previous Article
    Bounded positive solutions for diffusive logistic equations with unbounded distributed limitations
  • DCDS-S Home
  • This Issue
  • Next Article
    Traveling wave solutions of periodic nonlocal Fisher-KPP equations with non-compact asymmetric kernel
doi: 10.3934/dcdss.2021141
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Random attractors for stochastic delay wave equations on $ \mathbb{R}^n $ with linear memory and nonlinear damping

a. 

School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, China

b. 

College of Applied Mathematics, Shanxi University of Finance and Economicsm Taiyuan 030006, China

c. 

Departmento de Ecuaciones Diferenciales y Análisis Numéricom Facultad de Matemáticas, Universidad de Sevillam c/ Tarfia s/n, 41012 Sevilla, Spain

* Corresponding author: Yejuan Wang

Dedicated to Georg Hetzer on occasion of his 75th birthday

Received  July 2021 Early access November 2021

Fund Project: This work was supported by NSF of China (Grants No. 41875084, 11801335). The research of T. Caraballo has been partially supported by Ministerio de Ciencia, Innovación y Universidades (Spain), FEDER (European Community) under grant PGC2018-096540-B-I00, and by FEDER and Junta de Andalucía (Consejería de Economía y Conocimiento) under projects US-1254251 and P18-FR-4509

A non-autonomous stochastic delay wave equation with linear memory and nonlinear damping driven by additive white noise is considered on the unbounded domain $ \mathbb{R}^n $. We establish the existence and uniqueness of a random attractor $ \mathcal{A} $ that is compact in $ C{([-h, 0];H^1(\mathbb{R}^n))}\times C{([-h, 0];L^2(\mathbb{R}^n))}\times L_\mu^2(\mathbb{R}^+;H^1(\mathbb{R}^n)) $ with $ 1\leqslant n \leqslant 3 $.

Citation: Jingyu Wang, Yejuan Wang, Lin Yang, Tomás Caraballo. Random attractors for stochastic delay wave equations on $ \mathbb{R}^n $ with linear memory and nonlinear damping. Discrete and Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021141
References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[2]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25. North-Holland, Amsterdam, 1992.

[4]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.

[5]

S. Borini and V. Pata, Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal., 20 (1999), 263-277. 

[6]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283.  doi: 10.1016/j.na.2010.11.032.

[7]

T. CaraballoP. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn., 4 (2004), 405-423.  doi: 10.1142/S0219493704001139.

[8]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49. American Mathematical Society, Providence, RI, 2002. doi: 10.1051/cocv:2002056.

[9]

M. ContiV. DaneseC. Giorgi and V. Pata, A model of viscoelasticity with time-dependent memory kernels, Amer. J. Math., 140 (2018), 349-389.  doi: 10.1353/ajm.2018.0008.

[10]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.

[11]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[12]

M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM Studies in Applied Mathematics, vol. 12, SIAM, Philadelphia, 1992. doi: 10.1137/1.9781611970807.

[13]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437.  doi: 10.1142/S0129167X08004741.

[14]

E. Feireisl, Attractors for semilinear damped wave equations on $\mathbb{R}^3$, Nonlinear Anal., 23 (1994), 187-195.  doi: 10.1016/0362-546X(94)90041-8.

[15]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.

[16]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.

[17]

M. He and A. Liu, The oscillation of hyperbolic functional differential equations, Appl. Math. Comput., 142 (2003), 205-224.  doi: 10.1016/S0096-3003(02)00295-3.

[18]

R. Jones and B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal. Real World Appl., 14 (2013), 1308-1322.  doi: 10.1016/j.nonrwa.2012.09.019.

[19]

A. K. Khanmamedov, Global attractors for wave equations with nonlinear interior damping and critical exponents, J. Differential Equations, 230 (2006), 702-719.  doi: 10.1016/j.jde.2006.06.001.

[20]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.

[21]

I. KucukI. Sadek and Y. Yilmaz, Active control of a smart beam with time delay by Legendre wavelets, Appl. Math. Comput., 218 (2012), 8968-8977.  doi: 10.1016/j.amc.2012.02.057.

[22]

H. LiY. You and J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differential Equations, 258 (2015), 148-190.  doi: 10.1016/j.jde.2014.09.007.

[23]

F. Morillas and J. Valero, Attractors for reaction-diffusion equations in $\mathbb{R}^N$ with continuous nonlinearity, Asymptot. Anal., 44 (2005), 111-130. 

[24]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.

[25]

V. Pata, Attractors for a damped wave equation on $\mathbb{R}^3$ with linear memory, Math. Methods Appl. Sci., 23 (2000), 633-653.  doi: 10.1002/(SICI)1099-1476(20000510)23:7<633::AID-MMA135>3.0.CO;2-C.

[26]

N. Raskin and Y. Halevi, Control of flexible structures governed by the wave equation, American Control Conference, Arlington, VA, (2001), 2486–2491. doi: 10.1109/ACC.2001.946126.

[27]

R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.

[28]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.

[29]

C. SunM. Yang and C. Zhong, Global attractors for the wave equation with nonlinear damping, J. Differential Equations, 227 (2006), 427-443.  doi: 10.1016/j.jde.2005.09.010.

[30]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[31]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.

[32]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.

[33]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.

[34]

Y. Wang, Pullback attractors of a damped wave equation with delays, Stoch. Dyn., 15 (2015), 1550003, 21pp. doi: 10.1142/S0219493715500033.

[35]

J. WangF. Meng and S. Liu, Integral average method for oscillation of second order partial differential equations with delays, Appl. Math. Comput., 187 (2007), 815-823.  doi: 10.1016/j.amc.2006.08.160.

[36]

Y. Wang, Y. Qin and J. Wang, Pullback attractors for a strongly damped delay wave equation in $\mathbb{R}^n$, Stoch. Dyn., 18 (2018), 1850016, 24pp. doi: 10.1142/S0219493718500168.

[37]

Y. Wang and S. Zhou, Kernel sections and uniform attractors of multi-valued semiprocesses, J. Differential Equations, 232 (2007), 573-622.  doi: 10.1016/j.jde.2006.07.005.

[38]

Z. WangS. Zhou and A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl., 12 (2011), 3468-3482.  doi: 10.1016/j.nonrwa.2011.06.008.

[39]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences, 119. Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.

[40]

M. YangJ. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. Real World Appl., 12 (2011), 464-478.  doi: 10.1016/j.nonrwa.2010.06.032.

[41]

Y. You, Global dynamics of nonlinear wave equations with cubic non-monotone damping, Dyn. Partial Differ. Equ., 1 (2004), 65-86.  doi: 10.4310/DPDE.2004.v1.n1.a3.

[42]

S. Zelik, Asymptotic regularity of solutions of a non-autonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 3 (2004), 921–934. doi: 10.3934/cpaa.2004.3.921.

[43]

S. Zhou and M. Zhao, Random attractors for damped non-autonomous wave equations with memory and white noise, Nonlinear Anal., 120 (2015), 202-226.  doi: 10.1016/j.na.2015.03.009.

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[2]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25. North-Holland, Amsterdam, 1992.

[4]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.

[5]

S. Borini and V. Pata, Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal., 20 (1999), 263-277. 

[6]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283.  doi: 10.1016/j.na.2010.11.032.

[7]

T. CaraballoP. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn., 4 (2004), 405-423.  doi: 10.1142/S0219493704001139.

[8]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49. American Mathematical Society, Providence, RI, 2002. doi: 10.1051/cocv:2002056.

[9]

M. ContiV. DaneseC. Giorgi and V. Pata, A model of viscoelasticity with time-dependent memory kernels, Amer. J. Math., 140 (2018), 349-389.  doi: 10.1353/ajm.2018.0008.

[10]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.

[11]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[12]

M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM Studies in Applied Mathematics, vol. 12, SIAM, Philadelphia, 1992. doi: 10.1137/1.9781611970807.

[13]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437.  doi: 10.1142/S0129167X08004741.

[14]

E. Feireisl, Attractors for semilinear damped wave equations on $\mathbb{R}^3$, Nonlinear Anal., 23 (1994), 187-195.  doi: 10.1016/0362-546X(94)90041-8.

[15]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.

[16]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.

[17]

M. He and A. Liu, The oscillation of hyperbolic functional differential equations, Appl. Math. Comput., 142 (2003), 205-224.  doi: 10.1016/S0096-3003(02)00295-3.

[18]

R. Jones and B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal. Real World Appl., 14 (2013), 1308-1322.  doi: 10.1016/j.nonrwa.2012.09.019.

[19]

A. K. Khanmamedov, Global attractors for wave equations with nonlinear interior damping and critical exponents, J. Differential Equations, 230 (2006), 702-719.  doi: 10.1016/j.jde.2006.06.001.

[20]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.

[21]

I. KucukI. Sadek and Y. Yilmaz, Active control of a smart beam with time delay by Legendre wavelets, Appl. Math. Comput., 218 (2012), 8968-8977.  doi: 10.1016/j.amc.2012.02.057.

[22]

H. LiY. You and J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differential Equations, 258 (2015), 148-190.  doi: 10.1016/j.jde.2014.09.007.

[23]

F. Morillas and J. Valero, Attractors for reaction-diffusion equations in $\mathbb{R}^N$ with continuous nonlinearity, Asymptot. Anal., 44 (2005), 111-130. 

[24]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.

[25]

V. Pata, Attractors for a damped wave equation on $\mathbb{R}^3$ with linear memory, Math. Methods Appl. Sci., 23 (2000), 633-653.  doi: 10.1002/(SICI)1099-1476(20000510)23:7<633::AID-MMA135>3.0.CO;2-C.

[26]

N. Raskin and Y. Halevi, Control of flexible structures governed by the wave equation, American Control Conference, Arlington, VA, (2001), 2486–2491. doi: 10.1109/ACC.2001.946126.

[27]

R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.

[28]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.

[29]

C. SunM. Yang and C. Zhong, Global attractors for the wave equation with nonlinear damping, J. Differential Equations, 227 (2006), 427-443.  doi: 10.1016/j.jde.2005.09.010.

[30]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[31]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.

[32]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.

[33]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.

[34]

Y. Wang, Pullback attractors of a damped wave equation with delays, Stoch. Dyn., 15 (2015), 1550003, 21pp. doi: 10.1142/S0219493715500033.

[35]

J. WangF. Meng and S. Liu, Integral average method for oscillation of second order partial differential equations with delays, Appl. Math. Comput., 187 (2007), 815-823.  doi: 10.1016/j.amc.2006.08.160.

[36]

Y. Wang, Y. Qin and J. Wang, Pullback attractors for a strongly damped delay wave equation in $\mathbb{R}^n$, Stoch. Dyn., 18 (2018), 1850016, 24pp. doi: 10.1142/S0219493718500168.

[37]

Y. Wang and S. Zhou, Kernel sections and uniform attractors of multi-valued semiprocesses, J. Differential Equations, 232 (2007), 573-622.  doi: 10.1016/j.jde.2006.07.005.

[38]

Z. WangS. Zhou and A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl., 12 (2011), 3468-3482.  doi: 10.1016/j.nonrwa.2011.06.008.

[39]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences, 119. Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.

[40]

M. YangJ. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. Real World Appl., 12 (2011), 464-478.  doi: 10.1016/j.nonrwa.2010.06.032.

[41]

Y. You, Global dynamics of nonlinear wave equations with cubic non-monotone damping, Dyn. Partial Differ. Equ., 1 (2004), 65-86.  doi: 10.4310/DPDE.2004.v1.n1.a3.

[42]

S. Zelik, Asymptotic regularity of solutions of a non-autonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 3 (2004), 921–934. doi: 10.3934/cpaa.2004.3.921.

[43]

S. Zhou and M. Zhao, Random attractors for damped non-autonomous wave equations with memory and white noise, Nonlinear Anal., 120 (2015), 202-226.  doi: 10.1016/j.na.2015.03.009.

[1]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure and Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[2]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[3]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[4]

Tingting Liu, Qiaozhen Ma, Ling Xu. Attractor of the Kirchhoff type plate equation with memory and nonlinear damping on the whole time-dependent space. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022046

[5]

Renhai Wang, Yangrong Li. Backward compactness and periodicity of random attractors for stochastic wave equations with varying coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4145-4167. doi: 10.3934/dcdsb.2019054

[6]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1695-1724. doi: 10.3934/dcdsb.2021107

[7]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015

[8]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[9]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[10]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[11]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[12]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[13]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure and Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[14]

Tomás Caraballo, José Real, I. D. Chueshov. Pullback attractors for stochastic heat equations in materials with memory. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 525-539. doi: 10.3934/dcdsb.2008.9.525

[15]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[16]

Chunyan Zhao, Chengkui Zhong, Zhijun Tang. Asymptotic behavior of the wave equation with nonlocal weak damping, anti-damping and critical nonlinearity. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022025

[17]

Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058

[18]

Xudong Luo, Qiaozhen Ma. The existence of time-dependent attractor for wave equation with fractional damping and lower regular forcing term. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021253

[19]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1857-1871. doi: 10.3934/cpaa.2021043

[20]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control and Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (263)
  • HTML views (176)
  • Cited by (0)

[Back to Top]