doi: 10.3934/dcdss.2021141
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Random attractors for stochastic delay wave equations on $ \mathbb{R}^n $ with linear memory and nonlinear damping

a. 

School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, China

b. 

College of Applied Mathematics, Shanxi University of Finance and Economicsm Taiyuan 030006, China

c. 

Departmento de Ecuaciones Diferenciales y Análisis Numéricom Facultad de Matemáticas, Universidad de Sevillam c/ Tarfia s/n, 41012 Sevilla, Spain

* Corresponding author: Yejuan Wang

Dedicated to Georg Hetzer on occasion of his 75th birthday

Received  July 2021 Early access November 2021

Fund Project: This work was supported by NSF of China (Grants No. 41875084, 11801335). The research of T. Caraballo has been partially supported by Ministerio de Ciencia, Innovación y Universidades (Spain), FEDER (European Community) under grant PGC2018-096540-B-I00, and by FEDER and Junta de Andalucía (Consejería de Economía y Conocimiento) under projects US-1254251 and P18-FR-4509

A non-autonomous stochastic delay wave equation with linear memory and nonlinear damping driven by additive white noise is considered on the unbounded domain $ \mathbb{R}^n $. We establish the existence and uniqueness of a random attractor $ \mathcal{A} $ that is compact in $ C{([-h, 0];H^1(\mathbb{R}^n))}\times C{([-h, 0];L^2(\mathbb{R}^n))}\times L_\mu^2(\mathbb{R}^+;H^1(\mathbb{R}^n)) $ with $ 1\leqslant n \leqslant 3 $.

Citation: Jingyu Wang, Yejuan Wang, Lin Yang, Tomás Caraballo. Random attractors for stochastic delay wave equations on $ \mathbb{R}^n $ with linear memory and nonlinear damping. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021141
References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.  Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25. North-Holland, Amsterdam, 1992.  Google Scholar

[4]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[5]

S. Borini and V. Pata, Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal., 20 (1999), 263-277.   Google Scholar

[6]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283.  doi: 10.1016/j.na.2010.11.032.  Google Scholar

[7]

T. CaraballoP. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn., 4 (2004), 405-423.  doi: 10.1142/S0219493704001139.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49. American Mathematical Society, Providence, RI, 2002. doi: 10.1051/cocv:2002056.  Google Scholar

[9]

M. ContiV. DaneseC. Giorgi and V. Pata, A model of viscoelasticity with time-dependent memory kernels, Amer. J. Math., 140 (2018), 349-389.  doi: 10.1353/ajm.2018.0008.  Google Scholar

[10]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[11]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[12]

M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM Studies in Applied Mathematics, vol. 12, SIAM, Philadelphia, 1992. doi: 10.1137/1.9781611970807.  Google Scholar

[13]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437.  doi: 10.1142/S0129167X08004741.  Google Scholar

[14]

E. Feireisl, Attractors for semilinear damped wave equations on $\mathbb{R}^3$, Nonlinear Anal., 23 (1994), 187-195.  doi: 10.1016/0362-546X(94)90041-8.  Google Scholar

[15]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[16]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[17]

M. He and A. Liu, The oscillation of hyperbolic functional differential equations, Appl. Math. Comput., 142 (2003), 205-224.  doi: 10.1016/S0096-3003(02)00295-3.  Google Scholar

[18]

R. Jones and B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal. Real World Appl., 14 (2013), 1308-1322.  doi: 10.1016/j.nonrwa.2012.09.019.  Google Scholar

[19]

A. K. Khanmamedov, Global attractors for wave equations with nonlinear interior damping and critical exponents, J. Differential Equations, 230 (2006), 702-719.  doi: 10.1016/j.jde.2006.06.001.  Google Scholar

[20]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.  Google Scholar

[21]

I. KucukI. Sadek and Y. Yilmaz, Active control of a smart beam with time delay by Legendre wavelets, Appl. Math. Comput., 218 (2012), 8968-8977.  doi: 10.1016/j.amc.2012.02.057.  Google Scholar

[22]

H. LiY. You and J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differential Equations, 258 (2015), 148-190.  doi: 10.1016/j.jde.2014.09.007.  Google Scholar

[23]

F. Morillas and J. Valero, Attractors for reaction-diffusion equations in $\mathbb{R}^N$ with continuous nonlinearity, Asymptot. Anal., 44 (2005), 111-130.   Google Scholar

[24]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[25]

V. Pata, Attractors for a damped wave equation on $\mathbb{R}^3$ with linear memory, Math. Methods Appl. Sci., 23 (2000), 633-653.  doi: 10.1002/(SICI)1099-1476(20000510)23:7<633::AID-MMA135>3.0.CO;2-C.  Google Scholar

[26]

N. Raskin and Y. Halevi, Control of flexible structures governed by the wave equation, American Control Conference, Arlington, VA, (2001), 2486–2491. doi: 10.1109/ACC.2001.946126.  Google Scholar

[27]

R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[28]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.  Google Scholar

[29]

C. SunM. Yang and C. Zhong, Global attractors for the wave equation with nonlinear damping, J. Differential Equations, 227 (2006), 427-443.  doi: 10.1016/j.jde.2005.09.010.  Google Scholar

[30]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[31]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[32]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[33]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[34]

Y. Wang, Pullback attractors of a damped wave equation with delays, Stoch. Dyn., 15 (2015), 1550003, 21pp. doi: 10.1142/S0219493715500033.  Google Scholar

[35]

J. WangF. Meng and S. Liu, Integral average method for oscillation of second order partial differential equations with delays, Appl. Math. Comput., 187 (2007), 815-823.  doi: 10.1016/j.amc.2006.08.160.  Google Scholar

[36]

Y. Wang, Y. Qin and J. Wang, Pullback attractors for a strongly damped delay wave equation in $\mathbb{R}^n$, Stoch. Dyn., 18 (2018), 1850016, 24pp. doi: 10.1142/S0219493718500168.  Google Scholar

[37]

Y. Wang and S. Zhou, Kernel sections and uniform attractors of multi-valued semiprocesses, J. Differential Equations, 232 (2007), 573-622.  doi: 10.1016/j.jde.2006.07.005.  Google Scholar

[38]

Z. WangS. Zhou and A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl., 12 (2011), 3468-3482.  doi: 10.1016/j.nonrwa.2011.06.008.  Google Scholar

[39]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences, 119. Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[40]

M. YangJ. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. Real World Appl., 12 (2011), 464-478.  doi: 10.1016/j.nonrwa.2010.06.032.  Google Scholar

[41]

Y. You, Global dynamics of nonlinear wave equations with cubic non-monotone damping, Dyn. Partial Differ. Equ., 1 (2004), 65-86.  doi: 10.4310/DPDE.2004.v1.n1.a3.  Google Scholar

[42]

S. Zelik, Asymptotic regularity of solutions of a non-autonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 3 (2004), 921–934. doi: 10.3934/cpaa.2004.3.921.  Google Scholar

[43]

S. Zhou and M. Zhao, Random attractors for damped non-autonomous wave equations with memory and white noise, Nonlinear Anal., 120 (2015), 202-226.  doi: 10.1016/j.na.2015.03.009.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

J. ArrietaA. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.  doi: 10.1080/03605309208820866.  Google Scholar

[3]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25. North-Holland, Amsterdam, 1992.  Google Scholar

[4]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[5]

S. Borini and V. Pata, Uniform attractors for a strongly damped wave equation with linear memory, Asymptot. Anal., 20 (1999), 263-277.   Google Scholar

[6]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283.  doi: 10.1016/j.na.2010.11.032.  Google Scholar

[7]

T. CaraballoP. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn., 4 (2004), 405-423.  doi: 10.1142/S0219493704001139.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49. American Mathematical Society, Providence, RI, 2002. doi: 10.1051/cocv:2002056.  Google Scholar

[9]

M. ContiV. DaneseC. Giorgi and V. Pata, A model of viscoelasticity with time-dependent memory kernels, Amer. J. Math., 140 (2018), 349-389.  doi: 10.1353/ajm.2018.0008.  Google Scholar

[10]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[11]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[12]

M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM Studies in Applied Mathematics, vol. 12, SIAM, Philadelphia, 1992. doi: 10.1137/1.9781611970807.  Google Scholar

[13]

X. Fan, Random attractors for damped stochastic wave equations with multiplicative noise, Internat. J. Math., 19 (2008), 421-437.  doi: 10.1142/S0129167X08004741.  Google Scholar

[14]

E. Feireisl, Attractors for semilinear damped wave equations on $\mathbb{R}^3$, Nonlinear Anal., 23 (1994), 187-195.  doi: 10.1016/0362-546X(94)90041-8.  Google Scholar

[15]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[16]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[17]

M. He and A. Liu, The oscillation of hyperbolic functional differential equations, Appl. Math. Comput., 142 (2003), 205-224.  doi: 10.1016/S0096-3003(02)00295-3.  Google Scholar

[18]

R. Jones and B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal. Real World Appl., 14 (2013), 1308-1322.  doi: 10.1016/j.nonrwa.2012.09.019.  Google Scholar

[19]

A. K. Khanmamedov, Global attractors for wave equations with nonlinear interior damping and critical exponents, J. Differential Equations, 230 (2006), 702-719.  doi: 10.1016/j.jde.2006.06.001.  Google Scholar

[20]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.  Google Scholar

[21]

I. KucukI. Sadek and Y. Yilmaz, Active control of a smart beam with time delay by Legendre wavelets, Appl. Math. Comput., 218 (2012), 8968-8977.  doi: 10.1016/j.amc.2012.02.057.  Google Scholar

[22]

H. LiY. You and J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differential Equations, 258 (2015), 148-190.  doi: 10.1016/j.jde.2014.09.007.  Google Scholar

[23]

F. Morillas and J. Valero, Attractors for reaction-diffusion equations in $\mathbb{R}^N$ with continuous nonlinearity, Asymptot. Anal., 44 (2005), 111-130.   Google Scholar

[24]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.  Google Scholar

[25]

V. Pata, Attractors for a damped wave equation on $\mathbb{R}^3$ with linear memory, Math. Methods Appl. Sci., 23 (2000), 633-653.  doi: 10.1002/(SICI)1099-1476(20000510)23:7<633::AID-MMA135>3.0.CO;2-C.  Google Scholar

[26]

N. Raskin and Y. Halevi, Control of flexible structures governed by the wave equation, American Control Conference, Arlington, VA, (2001), 2486–2491. doi: 10.1109/ACC.2001.946126.  Google Scholar

[27]

R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[28]

Z. ShenS. Zhou and W. Shen, One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.  doi: 10.1016/j.jde.2009.10.007.  Google Scholar

[29]

C. SunM. Yang and C. Zhong, Global attractors for the wave equation with nonlinear damping, J. Differential Equations, 227 (2006), 427-443.  doi: 10.1016/j.jde.2005.09.010.  Google Scholar

[30]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[31]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[32]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[33]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[34]

Y. Wang, Pullback attractors of a damped wave equation with delays, Stoch. Dyn., 15 (2015), 1550003, 21pp. doi: 10.1142/S0219493715500033.  Google Scholar

[35]

J. WangF. Meng and S. Liu, Integral average method for oscillation of second order partial differential equations with delays, Appl. Math. Comput., 187 (2007), 815-823.  doi: 10.1016/j.amc.2006.08.160.  Google Scholar

[36]

Y. Wang, Y. Qin and J. Wang, Pullback attractors for a strongly damped delay wave equation in $\mathbb{R}^n$, Stoch. Dyn., 18 (2018), 1850016, 24pp. doi: 10.1142/S0219493718500168.  Google Scholar

[37]

Y. Wang and S. Zhou, Kernel sections and uniform attractors of multi-valued semiprocesses, J. Differential Equations, 232 (2007), 573-622.  doi: 10.1016/j.jde.2006.07.005.  Google Scholar

[38]

Z. WangS. Zhou and A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal. Real World Appl., 12 (2011), 3468-3482.  doi: 10.1016/j.nonrwa.2011.06.008.  Google Scholar

[39]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences, 119. Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[40]

M. YangJ. Duan and P. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal. Real World Appl., 12 (2011), 464-478.  doi: 10.1016/j.nonrwa.2010.06.032.  Google Scholar

[41]

Y. You, Global dynamics of nonlinear wave equations with cubic non-monotone damping, Dyn. Partial Differ. Equ., 1 (2004), 65-86.  doi: 10.4310/DPDE.2004.v1.n1.a3.  Google Scholar

[42]

S. Zelik, Asymptotic regularity of solutions of a non-autonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 3 (2004), 921–934. doi: 10.3934/cpaa.2004.3.921.  Google Scholar

[43]

S. Zhou and M. Zhao, Random attractors for damped non-autonomous wave equations with memory and white noise, Nonlinear Anal., 120 (2015), 202-226.  doi: 10.1016/j.na.2015.03.009.  Google Scholar

[1]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[2]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[3]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[4]

Renhai Wang, Yangrong Li. Backward compactness and periodicity of random attractors for stochastic wave equations with varying coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4145-4167. doi: 10.3934/dcdsb.2019054

[5]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015

[6]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[7]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[8]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[9]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[10]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[11]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[12]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure & Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[13]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[14]

Tomás Caraballo, José Real, I. D. Chueshov. Pullback attractors for stochastic heat equations in materials with memory. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 525-539. doi: 10.3934/dcdsb.2008.9.525

[15]

Xudong Luo, Qiaozhen Ma. The existence of time-dependent attractor for wave equation with fractional damping and lower regular forcing term. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021253

[16]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[17]

Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058

[18]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[19]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[20]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

2020 Impact Factor: 2.425

Article outline

[Back to Top]