[1]
|
W. Aangenent, D. Kostic, B. de Jager, R. van de Molengraft and M. Steinbuch, Data-Based optimal control, Proceedings of the 2005 American Control Conference, (2005), 1460–1465.
doi: 10.1109/ACC.2005.1470171.
|
[2]
|
A. Al-Tamimi, F. L. Lewis and M. Abu-Khalaf, Model-free Q-learning designs for linear discrete-time zero-sum games with application to H-infinity control, Automatica, 43 (2007), 473-481.
doi: 10.1016/j.automatica.2006.09.019.
|
[3]
|
K. J. Astrom and B. Wittenmark, Adaptative Control, Addison-Wesley, Reading, 1995.
|
[4]
|
D. Bertsekas, Reinforcement and Optimal Control, Athena Scientific, USA, 2019.
|
[5]
|
D. Bertsekas, Dynamic Programming and Optimal Control Vol. 1, 4$^{th}$ edition, Athena Scientific, USA, 2012.
|
[6]
|
T. Bian and Z. P. Jiang, Value iteration and adaptive dynamic programming for data-driven adaptive optimal control designs, Automatica, 71 (2016), 348-360.
doi: 10.1016/j.automatica.2016.05.003.
|
[7]
|
J. F. Blackburn, G. Reethof and J. L. Shearer, Fluid Power Control, The MIT Press Cambridge, USA, 1960.
|
[8]
|
A. Cavallo, G. De Maria, C. Natale and S. Pirozzi, Slipping detection and avoidance based on Kalman filter, Mechatronics, 24 (2014), 489-499.
doi: 10.1016/j.mechatronics.2014.05.006.
|
[9]
|
Y. H. Chang, Q. Hu and C. J. Tomlin, Secure estimation based Kalman filter for cyber–physical systems against sensor attacks, Automatica, 95 (2018), 399-412.
doi: 10.1016/j.automatica.2018.06.010.
|
[10]
|
T. Chen and B. A. Francis, Optimal Sampled-data Control Systems, Springer-Verlag, London, 1996.
doi: 10.1007/978-1-4471-3037-6.
|
[11]
|
V. Filipovic, N. Nedic and V. Stojanovic, Robust identification of pneumatic servo actuators in the real situations, Forschung im Ingenieurwesen - Engineering Research, 75 (2011), 183-196.
doi: 10.1007/s10010-011-0144-5.
|
[12]
|
W. Gao, Y. Jiang, Z. P. Jiang and T. Chai, Output-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming, Automatica, 72 (2016), 37-45.
doi: 10.1016/j.automatica.2016.05.008.
|
[13]
|
W. Gao, Y. Jiang, Z. P. Jiang and T. Chai, Adaptive and optimal output feedback control of linear systems: An adaptive dynamic programming approach, Proceeding of the 11th World Congress on Intelligent Control and Automation, China, (2014), 2085–2090.
|
[14]
|
W. Gao and Z. P. Jiang, Learning-based adaptive optimal tracking control of strict-feedback nonlinear systems, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 2614-2624.
doi: 10.1109/TNNLS.2017.2761718.
|
[15]
|
W. Gao, M. Huang, Z. P. Jiang and T. Chai, Sampled-data-based adaptive optimal output-feedback control of a 2-degree-of-freedom helicopter, IET Control Theory and Applications, 10 (2016), 1440-1447.
doi: 10.1049/iet-cta.2015.0977.
|
[16]
|
G. Hewer, An iterative technique for the computation of the steady state gains for the discrete optimal regulator, IEEE Transactions on Automatic Control, 16 (1971), 382-384.
doi: 10.1109/TAC.1971.1099755.
|
[17]
|
Q. Hu, Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits, Nonlinear Dynamics, 55 (2009), 301-321.
doi: 10.1007/s11071-008-9363-1.
|
[18]
|
P. A. Ioannou and J. Sun, Robust adaptive control, Dover Publications, New York, 2012.
|
[19]
|
M. Jelali and A. Kroll, Hydraulic Servo-systems: Modelling, Identification and Control, Springer-Verlag London, UK, 2012.
doi: 10.1007/978-1-4471-0099-7.
|
[20]
|
F. L. Lewis and D. Liu, Reinforcement Learning and Approximate Dynamic Programming for Feedback Control, John Wiley & Sons, New Jersey, USA, 2012.
doi: 10.1002/9781118453988.
|
[21]
|
F. L. Lewis and K. G. Vamvoudakis, Reinforcement learning for partially observable dynamic processes: Adaptive dynamic programming using measured output data, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41 (2010), 14-25.
|
[22]
|
F. L. Lewis, D. Vrabie and V. L. Syrmos, Optimal Control, 3$^{rd}$ edition, John Wiley & Sons, New Jersey, 2012.
doi: 10.1002/9781118122631.
|
[23]
|
X. Li, J. Shen, H. Akca and R. Rakkiyappan, LMI-based stability for singularly perturbed nonlinear impulsive differential systems with delays of small parameter, Appl. Math. Comput., 250 (2015), 798-804.
doi: 10.1016/j.amc.2014.10.113.
|
[24]
|
X. Li, X. Yang and S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135-140.
doi: 10.1016/j.automatica.2019.01.031.
|
[25]
|
L. Ljung, System Identification: Theory for the User, Prentice Hall, Inc., Englewood Cliffs, NJ, 1987
|
[26]
|
X. Lv and X. Li, Finite time stability and controller design for nonlinear impulsive sampled-data systems with applications, ISA Transactions, 70 (2017), 30-36.
doi: 10.1016/j.isatra.2017.07.025.
|
[27]
|
K. Maes, A. Iliopoulos, W. Weijtjens, C. Devriendt and G. Lombaert, Dynamic strain estimation for fatigue assessment of an offshore monopile wind turbine using filtering and modal expansion algorithms, Mechanical Systems and Signal Processing, 76–77 (2016), 592-611.
doi: 10.1016/j.ymssp.2016.01.004.
|
[28]
|
N. Manring, Fluid Power Pumps and Motors: Analysis, Design and Control, McGraw Hill Professional, USA, 2013.
|
[29]
|
J. J. Murray, C. J. Cox, G. G. Lendaris and R. Saeks, Adaptive dynamic programming, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews, 32 (2002), 140-153.
doi: 10.1109/TSMCC.2002.801727.
|
[30]
|
M. Mynuddin and W. Gao, Distributed predictive cruise control based on reinforcement learning and validation on microscopic traffic simulation, IET Intelligent Transport Systems, 14 (2020), 270-277.
doi: 10.1049/iet-its.2019.0404.
|
[31]
|
M. Mynuddin, W. Gao and Z. P. Jiang, Reinforcement learning for multi-agent systems with an application to distributed predictive cruise control, 2020 American Control Conference (ACC), (2020), 315–320.
doi: 10.23919/ACC45564.2020.9147968.
|
[32]
|
N. Nedic, V. Stojanovic and V. Djordjevic, Optimal control of hydraulically driven parallel robot platform based on firefly algorithm, Nonlinear Dynam., 82 (2015), 1457-1473.
doi: 10.1007/s11071-015-2252-5.
|
[33]
|
R. Pintelon and J. Schoukens, System Identification: A Frequency Domain Approach, 2$^{nd}$ edition, John Wiley & Sons, New Jersey, 2012.
|
[34]
|
C. R. Rojas, J. C. Aguero, J. S. Welsh, G. C. Goodwin and A. Feuer, Robustness in experiment design, IEEE Trans. Automat. Control, 57 (2012), 860-874.
doi: 10.1109/TAC.2011.2166294.
|
[35]
|
M. Roozegar, M. J. Mahjoob and M. Jahromi, Optimal motion planning and control of a nonholonomic spherical robot using dynamic programming approach: Simulation and experimental results, Mechatronics, 39 (2016), 174-184.
|
[36]
|
J. L. Sun and C. S. Liu, An overview on the adaptive dynamic programming based missile guidance law, Acta Automatica Sinica, 43 (2017), 1101-1113.
|
[37]
|
V. Stojanovic, N. Nedic, D. Prsic, L. Dubonjic and V. Djordjevic, Application of cuckoo search algorithm to constrained control problem of a parallel robot platform, J. Advanced Manufacturing Technology, 87 (2016), 2497-2507.
doi: 10.1007/s00170-016-8627-z.
|
[38]
|
V. Stojanovic and D. Prsic, Robust identification for fault detection in the presence of non-Gaussian noises: Application to hydraulic servo drives, Nonlinear Dynamics, 100 (2020), 2299-2313.
doi: 10.1007/s11071-020-05616-4.
|
[39]
|
M. Davari, W. Gao, Z. P. Jiang and F. L. Lewis, An Optimal Primary Frequency Control Based on Adaptive Dynamic Programming for Islanded Modernized Microgrids, IEEE Transactions on Automation Science and Engineering, 18 (2021), 1109-1121.
doi: 10.1109/TASE.2020.2996160.
|
[40]
|
M. Tomás-Rodríguez and S. P. Banks, Linear, Time-varying Approximations to Nonlinear Dynamical Systems: with Applications in Control and Optimization, Springer-Verlag Berlin, 2010.
doi: 10.1007/978-1-84996-101-1.
|
[41]
|
A. Vacca and G. Franzoni, Hydraulic Fluid Power: Fundamentals, Applications, and Circuit Design, John Wiley & Sons, USA, 2021.
|
[42]
|
K. G. Vamvoudakis and F. L. Lewis, Multi-player non-zero-sum games: Online adaptive learning solution of coupled Hamilton–Jacobi equations, Automatica, 47 (2011), 1556-1569.
doi: 10.1016/j.automatica.2011.03.005.
|
[43]
|
A. van de Walle, F. Naets and W. Desmet, Virtual microphone sensing through vibro-acoustic modelling and Kalman filtering, Mechanical Systems and Signal Processing, 104 (2018), 120-133.
doi: 10.1016/j.ymssp.2017.08.032.
|
[44]
|
J. J. Vyas, B. Gopalsamy and H. Joshi, Electro-Hydraulic Actuation Systems: Design, Testing, Identification and Validation, Springer, Singapore, 2019.
doi: 10.1007/978-981-13-2547-2.
|
[45]
|
P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences, Ph.D thesis, Harvard University, 1975.
|
[46]
|
H. Xu, S. Jagannathan and F. L. Lewis, Stochastic optimal control of unknown linear networked control system in the presence of random delays and packet losses, Automatica, 48 (2012), 1017-1030.
doi: 10.1016/j.automatica.2012.03.007.
|
[47]
|
X. Zhang and X. Li, Input-to-state stability of non-linear systems with distributed-delayed impulses, IET Control Theory Appl., 11 (2017), 81-89.
doi: 10.1049/iet-cta.2016.0469.
|
[48]
|
H. Zhang, R. Ye, S. Liu, J. Cao, A. Alsaedi and X. Li, LMI-based approach to stability analysis for fractional-order neural networks with discrete and distributed delays, Internat. J. Systems Sci., 49 (2018), 537-545.
doi: 10.1080/00207721.2017.1412534.
|