• Previous Article
    A new approach based on inventory control using interval differential equation with application to manufacturing system
  • DCDS-S Home
  • This Issue
  • Next Article
    Boundary stabilization of a flexible structure with dynamic boundary conditions via one time-dependent delayed boundary control
doi: 10.3934/dcdss.2021146
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Asymptotic spreading for Fisher-KPP reaction-diffusion equations with heterogeneous shifting diffusivity

1. 

Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, UPS IMT, F-31062 Toulouse Cedex 9, France

2. 

IECL; UMR 7502, University of Lorraine, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy Cedex, France

3. 

Department of Mathematical Sciences, Center for Mathematics and Artificial Intelligence (CMAI), George Mason University, Fairfax, VA, USA

*Corresponding author: Grégory Faye

Received  March 2021 Revised  September 2021 Early access November 2021

Fund Project: GF acknowledges support from an ANITI (Artificial and Natural Intelligence Toulouse Institute) Research Chair and from Labex CIMI under grant agreement ANR-11-LABX-0040. GF and TG acknowledge support from the ANR project Indyana under grant agreement ANR-21-CE40-0008-01. The research of MH was partially supported by the National Science Foundation (DMS-2007759)

We determine the asymptotic spreading speed of the solutions of a Fisher-KPP reaction-diffusion equation, starting from compactly supported initial data, when the diffusion coefficient is a fixed bounded monotone profile that is shifted at a given forcing speed and satisfies a general uniform ellipticity condition. Depending on the monotonicity of the profile, we are able to characterize this spreading speed as a function of the forcing speed and the two linear spreading speeds associated to the asymptotic problems at $ x = \pm \infty $. Most notably, when the profile of the diffusion coefficient is increasing we show that there is an intermediate range for the forcing speed where spreading actually occurs at a speed which is larger than the linear speed associated with the homogeneous state around the position of the front. We complement our study with the construction of strictly monotone traveling front solutions with strong exponential decay near the unstable state when the profile of the diffusion coefficient is decreasing and in the regime where the forcing speed is precisely the selected spreading speed.

Citation: Grégory Faye, Thomas Giletti, Matt Holzer. Asymptotic spreading for Fisher-KPP reaction-diffusion equations with heterogeneous shifting diffusivity. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021146
References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[2]

H. BerestyckiO. DiekmannC. J. Nagelkerke and P. A. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71 (2009), 399-429.  doi: 10.1007/s11538-008-9367-5.  Google Scholar

[3]

H. Berestycki and J. Fang, Forced waves of the Fisher–KPP equation in a shifting environment, J. Differential Equations, 264 (2018), 2157-2183.  doi: 10.1016/j.jde.2017.10.016.  Google Scholar

[4]

H. BerestyckiF. Hamel and L. Rossi, Liouville-type results for semilinear elliptic equations in unbounded domains, Ann. Mat. Pura Appl., 186 (2007), 469-507.  doi: 10.1007/s10231-006-0015-0.  Google Scholar

[5]

H. Berestycki and G. Nadin, Asymptotic spreading for general heterogeneous equations, Memoirs of the American Mathematical Society. Google Scholar

[6]

H. Berestycki and G. Nadin, Spreading speeds for one-dimensional monostable reaction-diffusion equations, J. Math. Phys., 53 (2012), 115619, 23pp. doi: 10.1063/1.4764932.  Google Scholar

[7]

H. Berestycki and L. Rossi, On the principal eigenvalue of elliptic operators in $\mathbb{R}^n $ and applications, J. Eur. Math. Soc. (JEMS), 8 (2006), 195-215.  doi: 10.4171/JEMS/47.  Google Scholar

[8]

H. Berestycki and L. Rossi, Reaction-diffusion equations for population dynamics with forced speed I-the case of the whole space, Discrete Contin. Dyn. Syst., 21 (2008), 41-67.  doi: 10.3934/dcds.2008.21.41.  Google Scholar

[9]

H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Comm. Pure Appl. Math., 68 (2015), 1014-1065.  doi: 10.1002/cpa.21536.  Google Scholar

[10]

J. Bouhours and T. Giletti, Spreading and vanishing for a monostable reaction–diffusion equation with forced speed, J. Dynam. Differential Equations, 31 (2019), 247-286.  doi: 10.1007/s10884-018-9643-5.  Google Scholar

[11]

W. A. Coppel, Dichotomies in Stability Theory, Vol. 629. Springer-Verlag, Berlin-New York, 1978.  Google Scholar

[12]

C. Cosner, Challenges in modeling biological invasions and population distributions in a changing climate, Ecological Complexity, 20 (2014), 258-263.  doi: 10.1016/j.ecocom.2014.05.007.  Google Scholar

[13]

A. Ducrot, T. Giletti and H. Matano, Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type, Calc. Var. Partial Differential Equations, 58 (2019), 137, 34pp. doi: 10.1007/s00526-019-1576-2.  Google Scholar

[14]

G. Faye and M. Holzer, Bifurcation to locked fronts in two component reaction-diffusion systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 545-584.  doi: 10.1016/j.anihpc.2018.08.001.  Google Scholar

[15]

R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 355-369.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[16]

T. Gallay and C. Mascia, Propagation fronts in a simplified model of tumor growth with degenerate cross-dependent self-diffusivity, Nonlinear Anal. Real World Appl., 63 (2022), 103387, 28pp. doi: 10.1016/j.nonrwa.2021.103387.  Google Scholar

[17]

R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Research, 56 (1996), 5745-5753.   Google Scholar

[18]

L. Girardin and K.-Y. Lam, Invasion of open space by two competitors: Spreading properties of monostable two-species competition-diffusion systems, Proc. Lond. Math. Soc., 119 (2019), 1279-1335.  doi: 10.1112/plms.12270.  Google Scholar

[19]

M. Holzer and A. Scheel, Accelerated fronts in a two-stage invasion process, SIAM J. Math. Anal., 46 (2014), 397-427.  doi: 10.1137/120887746.  Google Scholar

[20]

T. Kapitula and K. Promislow, Spectral and Dynamical Stability of Nonlinear Waves, Applied Mathematical Sciences, 185. Springer, New York, 2013.  Google Scholar

[21]

A. N. Kolmogorov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application àun problème biologique, Bull. Univ. Moskow, Ser. Internat., Sec. A, 1 (1937), 1-25.   Google Scholar

[22]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a banach space, Uspehi Matem. Nauk (N. S.), 3 (1948), 3-95.   Google Scholar

[23]

K.-Y. Lam and X. Yu, Asymptotic spreading of kpp reactive fronts in heterogeneous shifting environments, preprint, arXiv: 2101.06698, 2021. Google Scholar

[24]

M. Lewis and J. Murray, Modelling territoriality and wolf–deer interactions, Nature, 366 (1993), 738-740.  doi: 10.1038/366738a0.  Google Scholar

[25]

B. LiS. BewickJ. Shang and W. F. Fagan, Persistence and spread of a species with a shifting habitat edge, SIAM J. Appl. Math., 74 (2014), 1397-1417.  doi: 10.1137/130938463.  Google Scholar

[26]

B. Sandstede and A. Scheel, Absolute and convective instabilities of waves on unbounded and large bounded domains, Phys. D, 145 (2000), 233-277.  doi: 10.1016/S0167-2789(00)00114-7.  Google Scholar

[27]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[2]

H. BerestyckiO. DiekmannC. J. Nagelkerke and P. A. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71 (2009), 399-429.  doi: 10.1007/s11538-008-9367-5.  Google Scholar

[3]

H. Berestycki and J. Fang, Forced waves of the Fisher–KPP equation in a shifting environment, J. Differential Equations, 264 (2018), 2157-2183.  doi: 10.1016/j.jde.2017.10.016.  Google Scholar

[4]

H. BerestyckiF. Hamel and L. Rossi, Liouville-type results for semilinear elliptic equations in unbounded domains, Ann. Mat. Pura Appl., 186 (2007), 469-507.  doi: 10.1007/s10231-006-0015-0.  Google Scholar

[5]

H. Berestycki and G. Nadin, Asymptotic spreading for general heterogeneous equations, Memoirs of the American Mathematical Society. Google Scholar

[6]

H. Berestycki and G. Nadin, Spreading speeds for one-dimensional monostable reaction-diffusion equations, J. Math. Phys., 53 (2012), 115619, 23pp. doi: 10.1063/1.4764932.  Google Scholar

[7]

H. Berestycki and L. Rossi, On the principal eigenvalue of elliptic operators in $\mathbb{R}^n $ and applications, J. Eur. Math. Soc. (JEMS), 8 (2006), 195-215.  doi: 10.4171/JEMS/47.  Google Scholar

[8]

H. Berestycki and L. Rossi, Reaction-diffusion equations for population dynamics with forced speed I-the case of the whole space, Discrete Contin. Dyn. Syst., 21 (2008), 41-67.  doi: 10.3934/dcds.2008.21.41.  Google Scholar

[9]

H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Comm. Pure Appl. Math., 68 (2015), 1014-1065.  doi: 10.1002/cpa.21536.  Google Scholar

[10]

J. Bouhours and T. Giletti, Spreading and vanishing for a monostable reaction–diffusion equation with forced speed, J. Dynam. Differential Equations, 31 (2019), 247-286.  doi: 10.1007/s10884-018-9643-5.  Google Scholar

[11]

W. A. Coppel, Dichotomies in Stability Theory, Vol. 629. Springer-Verlag, Berlin-New York, 1978.  Google Scholar

[12]

C. Cosner, Challenges in modeling biological invasions and population distributions in a changing climate, Ecological Complexity, 20 (2014), 258-263.  doi: 10.1016/j.ecocom.2014.05.007.  Google Scholar

[13]

A. Ducrot, T. Giletti and H. Matano, Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type, Calc. Var. Partial Differential Equations, 58 (2019), 137, 34pp. doi: 10.1007/s00526-019-1576-2.  Google Scholar

[14]

G. Faye and M. Holzer, Bifurcation to locked fronts in two component reaction-diffusion systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 545-584.  doi: 10.1016/j.anihpc.2018.08.001.  Google Scholar

[15]

R. A. Fisher, The wave of advance of advantageous genes, Annals of Eugenics, 7 (1937), 355-369.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[16]

T. Gallay and C. Mascia, Propagation fronts in a simplified model of tumor growth with degenerate cross-dependent self-diffusivity, Nonlinear Anal. Real World Appl., 63 (2022), 103387, 28pp. doi: 10.1016/j.nonrwa.2021.103387.  Google Scholar

[17]

R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Research, 56 (1996), 5745-5753.   Google Scholar

[18]

L. Girardin and K.-Y. Lam, Invasion of open space by two competitors: Spreading properties of monostable two-species competition-diffusion systems, Proc. Lond. Math. Soc., 119 (2019), 1279-1335.  doi: 10.1112/plms.12270.  Google Scholar

[19]

M. Holzer and A. Scheel, Accelerated fronts in a two-stage invasion process, SIAM J. Math. Anal., 46 (2014), 397-427.  doi: 10.1137/120887746.  Google Scholar

[20]

T. Kapitula and K. Promislow, Spectral and Dynamical Stability of Nonlinear Waves, Applied Mathematical Sciences, 185. Springer, New York, 2013.  Google Scholar

[21]

A. N. Kolmogorov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application àun problème biologique, Bull. Univ. Moskow, Ser. Internat., Sec. A, 1 (1937), 1-25.   Google Scholar

[22]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a banach space, Uspehi Matem. Nauk (N. S.), 3 (1948), 3-95.   Google Scholar

[23]

K.-Y. Lam and X. Yu, Asymptotic spreading of kpp reactive fronts in heterogeneous shifting environments, preprint, arXiv: 2101.06698, 2021. Google Scholar

[24]

M. Lewis and J. Murray, Modelling territoriality and wolf–deer interactions, Nature, 366 (1993), 738-740.  doi: 10.1038/366738a0.  Google Scholar

[25]

B. LiS. BewickJ. Shang and W. F. Fagan, Persistence and spread of a species with a shifting habitat edge, SIAM J. Appl. Math., 74 (2014), 1397-1417.  doi: 10.1137/130938463.  Google Scholar

[26]

B. Sandstede and A. Scheel, Absolute and convective instabilities of waves on unbounded and large bounded domains, Phys. D, 145 (2000), 233-277.  doi: 10.1016/S0167-2789(00)00114-7.  Google Scholar

[27]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

Figure 1.  Illustration of $ \chi $ in cases (I) (left) and (II) (right)
Figure 2.  Numerically computed spreading speed $ c_u^* $ (pink circles) as a function of $ c_{het} $ for Case (I) (left) and Case (II) (right). The purple plain line is the theoretical spreading speed provided by Theorem 2.1 and Theorem 2.3. In both cases parameters are fixed with $ \alpha = 1 $, $ d_+ = 1 $ and $ d_- = 1/4 $, such that the corresponding linear speeds are $ c_+ = 2 $ and $ c_- = 1 $. The function $ \chi $ was set to $ \chi(x) = \frac{d_+ e^{-\lambda x} + d_-}{1+e^{-\lambda x}} $ in Case (I) and to $ \chi(x) = \frac{d_- e^{-\lambda x} + d_+}{1+e^{-\lambda x}} $ in Case (II) with $ \lambda = 2 $. Numerical simulations were performed by discretizing equation (1) via finite differences in space and a semi-implicit scheme in time. Typical discretization step sizes were set to $ \delta t = 0.02 $ in time and $ \delta x = 0.02 $ in  
Figure 3.  Numerically computed spreading speed $ c_u^* $ (pink circles) as a function of $ c_{het} $ for Case (II) in the degenerate case where $ d_- = 0 $. The purple plain line is the curve $ c_{het}\mapsto \frac{4 d_+ \alpha}{c_{het}} $ obtained by formally taking the limit $ d_- = 0 $ in Theorem 2.3. Other parameters are fixed with $ \alpha = 1 $ and $ d_+ = 1 $, such that the corresponding linear speed is $ c_+ = 2 $. The function $ \chi $ was set to $ \chi(x) = \frac{d_+}{1+e^{-\lambda x}} $ with $ \lambda = 2 $
Figure 4.  Illustration of the building block of the general sub-solution (10) (before its scaling by $ \epsilon $) which is composed of two parts $ \rho \Psi_+ $ (pink curve) and $ \Psi_- $ (blue curve) in the moving frame $ z = x-ct $. It is of class $ \mathscr{C}^2 $ and compactly supported on $ \left[-\frac{\pi}{2\omega}-z_+^*,\frac{\pi}{2\beta}-z_-^*\right] $
Figure 5.  Sketch of the super-solution $ u_\tau(t,x) $ given in Lemma 5.1 with $ C = 1 $ which is composed of three parts: it is constant and equal to $ 1 $ for $ x\leq ct-\tau $ (gray curve), and then it is the concatenation of two exponentials (blue and pink curves) for $ x\geq ct-\tau $ which are glued at $ x = c_{het}t-\tau $. Note that the factor $ \rho(t) $ is to ensure continuity between the two exponentials
Figure 6.  Sketch of the sub-solution given in Proposition 2 which is the concatenation of the sub-solution $ \underline{u}_{1,\tau}(x-ct) $ given in Lemma 5.2 (composed of the difference of two exponentials) and the function $ {\varphi}_{\lambda_\star-\epsilon} $ which solves $ \mathcal{L} \varphi = (\lambda_\star-\epsilon)\varphi $ with prescribed asymptotic behavior at $ -\infty $. Note that the factor $ \rho(t) $ is to ensure continuity at the matching point $ x = c_{het}t-\tau/2 $
[1]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[2]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[3]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[4]

Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21

[5]

Tianran Zhang. Traveling waves for a reaction-diffusion model with a cyclic structure. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1859-1870. doi: 10.3934/dcdsb.2020006

[6]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[7]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[8]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[9]

Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic & Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048

[10]

Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1503-1521. doi: 10.3934/dcdsb.2018054

[11]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure & Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[12]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[13]

Juliette Bouhours, Grégroie Nadin. A variational approach to reaction-diffusion equations with forced speed in dimension 1. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1843-1872. doi: 10.3934/dcds.2015.35.1843

[14]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[15]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[16]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[17]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[18]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

[19]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[20]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (29)
  • HTML views (30)
  • Cited by (0)

Other articles
by authors

[Back to Top]