doi: 10.3934/dcdss.2021147
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Approximate controllability of nonsimple elastic plate with memory

1. 

Université de Carthage, Ecole Nationale d'Ingénieurs de Bizerte, 7035, BP 66, Tunisia

2. 

UR Systèmes dynamiques et applications, UR 17ES21

3. 

Université de Monastir, Faculté des Sciences de Monastir, 5000-Monastir, Tunisia

4. 

South Ural State University, Lenin prospect 76, Chelyabinsk, 454080, Russian Federation

5. 

Université de Monastir, Ecole Nationale d'Ingénieurs de Monastir, 5005, Tunisia

* Corresponding author: Moncef Aouadi

Received  July 2021 Revised  September 2021 Early access November 2021

In this paper, we give some qualitative results on the behavior of a nonsimple elastic plate with memory corresponding to anti-plane shear deformations. First we describe briefly the equations of the considered plate and then we study the well-posedness of the resulting problem. Secondly, we perform the spectral analysis, in particular, we establish conditions on the physical constants of the plate to guarantee the simplicity and the monotonicity of the roots of the characteristic equation. The spectral results are used to prove the exponential stability of the solutions at an optimal decay rate given by the physical constants. Then we present an approximate controllability result of the considered control problem. Finally, we give some numerical experiments based on the spectral method developed with implementation in MATLAB for one and two-dimensional problems.

Citation: Moncef Aouadi, Imed Mahfoudhi, Taoufik Moulahi. Approximate controllability of nonsimple elastic plate with memory. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021147
References:
[1]

A. Anikushyn and M. Pokojovy, Multidimensional thermoelasticity for nonsimple materials-well-posedness and long-time behavior, Appl. Anal., 96 (2017), 1561-1585.  doi: 10.1080/00036811.2017.1295447.  Google Scholar

[2]

M. Aouadi, Stability aspects in a nonsimple thermoelastic diffusion problem, Appl. Anal., 92 (2013), 1816-1828.  doi: 10.1080/00036811.2012.702341.  Google Scholar

[3]

M. Aouadi, On uniform decay of a nonsimple thermoelastic bar with memory, J. Math. Anal. Appl., 402 (2013), 745-757.  doi: 10.1016/j.jmaa.2013.01.059.  Google Scholar

[4]

M. Aouadi and T. Moulahi, The controllability of a thermoelastic plate problem revisited, Evol. Equ. Control Theory, 7 (2018), 1-31.  doi: 10.3934/eect.2018001.  Google Scholar

[5]

M. Aouadi and T. Moulahi, Asymptotic analysis of a nonsimple thermoelastic rod, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1475-1492.  doi: 10.3934/dcdss.2016059.  Google Scholar

[6]

M. Aouadi and T. Moulahi, Approximate controllability of abstract nonsimple thermoelastic problem, Evol. Equ. Control Theory, 4 (2015), 373-389.  doi: 10.3934/eect.2015.4.373.  Google Scholar

[7]

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Graduate Texts in Mathematics, 137. Springer-Verlag, New York, 1992. doi: 10.1007/b97238.  Google Scholar

[8]

M. Bachher and N. Sarkar, Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer,, Waves Random Complex Media, 29 (2019), 595-613.  doi: 10.1080/17455030.2018.1457230.  Google Scholar

[9]

S. Biswas, The propagation of plane waves in nonlocal visco-thermoelastic porous medium based on nonlocal strain gradient theory,, Waves in Random and Complex Media, 2021. doi: 10.1080/17455030.2021.1909780.  Google Scholar

[10]

M. Ciarletta and D. Ieşan, Non-classical Elastic Solids, Pitman Research Notes in Mathematical Series, vol. 293, John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[11]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems, Lecture Notes in Control and Information Sciences, Springer, Berlin, 1978.  Google Scholar

[12]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21, Springer, New York, NY, USA, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[13]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[14]

C. A. J. Fletcher, Computational Galerkin Methods, Springer Series in Computational Physics, Springer-Verlag, New York, 1984. doi: 10.1007/978-3-642-85949-6.  Google Scholar

[15]

C. GiorgiA. Marzocchi and V. Pata, Asymptotic behavior of a semilinear problem in heat conduction with memory, NoDEA Nonlinear Diff. Equat. Appl., 5 (1998), 333-354.  doi: 10.1007/s000300050049.  Google Scholar

[16]

D. Y. Khusainov and M. Pokojovy, Solving the linear 1D thermoelasticity equations with pure delay, Int. J. Math. Math. Sci., 2015 (2015), Art. ID 479267, 11 pp.  Google Scholar

[17]

G. Leugering, Time optimal boundary controllability of a simple linear viscoelastic liquid, Math. Methods Appl. Sci., 9 (1987), 413-430.   Google Scholar

[18]

Z. LiuA. Magaña and R. Quintanilla, On the time decay of solutions for non-simple elasticity with voids, Z. Angew. Math. Mech., 96 (2016), 857-873.  doi: 10.1002/zamm.201400290.  Google Scholar

[19]

P. LoretiL. Pandolfi and D. Sforza, Boundary controllability and observability of a viscoelastic string, SIAM J. Control Optim., 50 (2012), 820-844.  doi: 10.1137/110827740.  Google Scholar

[20]

P. Loreti and D. Sforza, Reachability problems for a class of integro-differential equations, J. Differential Equations, 248 (2010), 1711-1755.  doi: 10.1016/j.jde.2009.09.016.  Google Scholar

[21]

Q. LüX. Zhang and E. Zuazua, Null controllability for wave equations with memory, J. Math. Pures Appl., 108 (2017), 500-531.  doi: 10.1016/j.matpur.2017.05.001.  Google Scholar

[22]

A. Magaña and R. Quintanilla, Exponential decay in nonsimple thermoelasticity of type III, Math. Meth. Appl. Sci., 39 (2016), 225-235.  doi: 10.1002/mma.3472.  Google Scholar

[23]

R. D. Mindlin, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16 (1964), 51-78.  doi: 10.1007/BF00248490.  Google Scholar

[24]

V. Pata and R. Quintanilla, On the decay of solutions in nonsimple elastic solids with memory, J. Math. Anal. Appl., 363 (2010), 19-28.  doi: 10.1016/j.jmaa.2009.07.055.  Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[26] W. PressS. TeukolskyW. Vetterling and B. Flannery, Numerical Recipes in FORTRAN, Cambridge University Press, Cambridge, 1992.   Google Scholar
[27]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987.  Google Scholar

[28]

R. A. Toupin, Theories of elasticity with couple-stress, Arch. Ration. Mech. Anal., 17 (1964), 85-112.  doi: 10.1007/BF00253050.  Google Scholar

[29] L. N. Trefethen, Spectral Methods in Matlab, SIAM Press, volume 10, 2000.  doi: 10.1137/1.9780898719598.  Google Scholar
[30]

J. Zabczyk, Mathematical Control Theory: An Introduction, Reprint of the 1995 edition, Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2008. doi: 10.1007/978-0-8176-4733-9.  Google Scholar

show all references

References:
[1]

A. Anikushyn and M. Pokojovy, Multidimensional thermoelasticity for nonsimple materials-well-posedness and long-time behavior, Appl. Anal., 96 (2017), 1561-1585.  doi: 10.1080/00036811.2017.1295447.  Google Scholar

[2]

M. Aouadi, Stability aspects in a nonsimple thermoelastic diffusion problem, Appl. Anal., 92 (2013), 1816-1828.  doi: 10.1080/00036811.2012.702341.  Google Scholar

[3]

M. Aouadi, On uniform decay of a nonsimple thermoelastic bar with memory, J. Math. Anal. Appl., 402 (2013), 745-757.  doi: 10.1016/j.jmaa.2013.01.059.  Google Scholar

[4]

M. Aouadi and T. Moulahi, The controllability of a thermoelastic plate problem revisited, Evol. Equ. Control Theory, 7 (2018), 1-31.  doi: 10.3934/eect.2018001.  Google Scholar

[5]

M. Aouadi and T. Moulahi, Asymptotic analysis of a nonsimple thermoelastic rod, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1475-1492.  doi: 10.3934/dcdss.2016059.  Google Scholar

[6]

M. Aouadi and T. Moulahi, Approximate controllability of abstract nonsimple thermoelastic problem, Evol. Equ. Control Theory, 4 (2015), 373-389.  doi: 10.3934/eect.2015.4.373.  Google Scholar

[7]

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Graduate Texts in Mathematics, 137. Springer-Verlag, New York, 1992. doi: 10.1007/b97238.  Google Scholar

[8]

M. Bachher and N. Sarkar, Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer,, Waves Random Complex Media, 29 (2019), 595-613.  doi: 10.1080/17455030.2018.1457230.  Google Scholar

[9]

S. Biswas, The propagation of plane waves in nonlocal visco-thermoelastic porous medium based on nonlocal strain gradient theory,, Waves in Random and Complex Media, 2021. doi: 10.1080/17455030.2021.1909780.  Google Scholar

[10]

M. Ciarletta and D. Ieşan, Non-classical Elastic Solids, Pitman Research Notes in Mathematical Series, vol. 293, John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[11]

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems, Lecture Notes in Control and Information Sciences, Springer, Berlin, 1978.  Google Scholar

[12]

R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21, Springer, New York, NY, USA, 1995. doi: 10.1007/978-1-4612-4224-6.  Google Scholar

[13]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[14]

C. A. J. Fletcher, Computational Galerkin Methods, Springer Series in Computational Physics, Springer-Verlag, New York, 1984. doi: 10.1007/978-3-642-85949-6.  Google Scholar

[15]

C. GiorgiA. Marzocchi and V. Pata, Asymptotic behavior of a semilinear problem in heat conduction with memory, NoDEA Nonlinear Diff. Equat. Appl., 5 (1998), 333-354.  doi: 10.1007/s000300050049.  Google Scholar

[16]

D. Y. Khusainov and M. Pokojovy, Solving the linear 1D thermoelasticity equations with pure delay, Int. J. Math. Math. Sci., 2015 (2015), Art. ID 479267, 11 pp.  Google Scholar

[17]

G. Leugering, Time optimal boundary controllability of a simple linear viscoelastic liquid, Math. Methods Appl. Sci., 9 (1987), 413-430.   Google Scholar

[18]

Z. LiuA. Magaña and R. Quintanilla, On the time decay of solutions for non-simple elasticity with voids, Z. Angew. Math. Mech., 96 (2016), 857-873.  doi: 10.1002/zamm.201400290.  Google Scholar

[19]

P. LoretiL. Pandolfi and D. Sforza, Boundary controllability and observability of a viscoelastic string, SIAM J. Control Optim., 50 (2012), 820-844.  doi: 10.1137/110827740.  Google Scholar

[20]

P. Loreti and D. Sforza, Reachability problems for a class of integro-differential equations, J. Differential Equations, 248 (2010), 1711-1755.  doi: 10.1016/j.jde.2009.09.016.  Google Scholar

[21]

Q. LüX. Zhang and E. Zuazua, Null controllability for wave equations with memory, J. Math. Pures Appl., 108 (2017), 500-531.  doi: 10.1016/j.matpur.2017.05.001.  Google Scholar

[22]

A. Magaña and R. Quintanilla, Exponential decay in nonsimple thermoelasticity of type III, Math. Meth. Appl. Sci., 39 (2016), 225-235.  doi: 10.1002/mma.3472.  Google Scholar

[23]

R. D. Mindlin, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16 (1964), 51-78.  doi: 10.1007/BF00248490.  Google Scholar

[24]

V. Pata and R. Quintanilla, On the decay of solutions in nonsimple elastic solids with memory, J. Math. Anal. Appl., 363 (2010), 19-28.  doi: 10.1016/j.jmaa.2009.07.055.  Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[26] W. PressS. TeukolskyW. Vetterling and B. Flannery, Numerical Recipes in FORTRAN, Cambridge University Press, Cambridge, 1992.   Google Scholar
[27]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987.  Google Scholar

[28]

R. A. Toupin, Theories of elasticity with couple-stress, Arch. Ration. Mech. Anal., 17 (1964), 85-112.  doi: 10.1007/BF00253050.  Google Scholar

[29] L. N. Trefethen, Spectral Methods in Matlab, SIAM Press, volume 10, 2000.  doi: 10.1137/1.9780898719598.  Google Scholar
[30]

J. Zabczyk, Mathematical Control Theory: An Introduction, Reprint of the 1995 edition, Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2008. doi: 10.1007/978-0-8176-4733-9.  Google Scholar

Figure 1.  The displacement $ u(x,t) $ for time interval $ [0,5] $ (left) on the points $ x_0 = 1/6, x_1 = 3/4 $ and $ x_2 = 1 $ (right)
Figure 2.  The Energy $ E(t) $ in the time interval $ [0, 5] $ (left) the logarithmic energy (right)
Figure 3.  The displacement $ u(x_i,y_i,t) $ at $ (x_i, y_i) = (1,1) $, $ (\frac{1}{2},\frac{3}{4}) $ and $ (\frac{1}{3},\frac{5}{6}) $, for time $ [0,20] $
Figure 4.  The energy $ E(t) $ in the time interval $ [0, 20] $ (left) the logarithmic energy (right)
Figure 5.  The eigenvalues $ n\mapsto \sigma_{0}(n) $ and $ n\mapsto\Re e(\sigma_{1})(n) $
[1]

Moncef Aouadi, Taoufik Moulahi. Approximate controllability of abstract nonsimple thermoelastic problem. Evolution Equations & Control Theory, 2015, 4 (4) : 373-389. doi: 10.3934/eect.2015.4.373

[2]

Roberto Triggiani, Jing Zhang. Heat-viscoelastic plate interaction: Analyticity, spectral analysis, exponential decay. Evolution Equations & Control Theory, 2018, 7 (1) : 153-182. doi: 10.3934/eect.2018008

[3]

Shikuan Mao, Yongqin Liu. Decay of solutions to generalized plate type equations with memory. Kinetic & Related Models, 2014, 7 (1) : 121-131. doi: 10.3934/krm.2014.7.121

[4]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[5]

Yongqin Liu, Shuichi Kawashima. Decay property for a plate equation with memory-type dissipation. Kinetic & Related Models, 2011, 4 (2) : 531-547. doi: 10.3934/krm.2011.4.531

[6]

Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649

[7]

Sergei A. Avdonin, Boris P. Belinskiy. On controllability of a linear elastic beam with memory under longitudinal load. Evolution Equations & Control Theory, 2014, 3 (2) : 231-245. doi: 10.3934/eect.2014.3.231

[8]

Imen Manoubi. Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2837-2863. doi: 10.3934/dcdsb.2014.19.2837

[9]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[10]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[11]

Moncef Aouadi, Taoufik Moulahi. Asymptotic analysis of a nonsimple thermoelastic rod. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1475-1492. doi: 10.3934/dcdss.2016059

[12]

Marco Campo, José R. Fernández, Maria Grazia Naso. A dynamic problem involving a coupled suspension bridge system: Numerical analysis and computational experiments. Evolution Equations & Control Theory, 2019, 8 (3) : 489-502. doi: 10.3934/eect.2019024

[13]

Baowei Feng, Abdelaziz Soufyane. New general decay results for a von Karman plate equation with memory-type boundary conditions. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1757-1774. doi: 10.3934/dcds.2020092

[14]

Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure & Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953

[15]

Orazio Arena. A problem of boundary controllability for a plate. Evolution Equations & Control Theory, 2013, 2 (4) : 557-562. doi: 10.3934/eect.2013.2.557

[16]

Joseph D. Fehribach. Using numerical experiments to discover theorems in differential equations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 495-504. doi: 10.3934/dcdsb.2003.3.495

[17]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[18]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1521-1543. doi: 10.3934/cpaa.2021031

[19]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulations of a frictional contact problem with damage and memory. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021037

[20]

Massimiliano Guzzo, Giancarlo Benettin. A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 1-28. doi: 10.3934/dcdsb.2001.1.1

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (36)
  • HTML views (65)
  • Cited by (0)

Other articles
by authors

[Back to Top]