[1]
|
D. F. Boesch, D. M. Anderson and R. A. Horner et al., Harmful algal blooms in coastal waters: Options for prevention, control, and mitigation, NOAA Coastal Ocean Program Decision Analysis Series, 10 (1997).
|
[2]
|
J. M. Burkholder et al., Impacts to a coastal river and estuary from rupture of a large swine waste holding lagoon, Journal of Environmental Quality, 26, (1997), 1451–1466.
|
[3]
|
J. Burkholder, B. Libra and P. Weyer et al., Impacts of waste from concentrated animal feeding operations on water quality, Environ. Health Persp., 115, (2007), 308–312.
doi: 10.1289/ehp.8839.
|
[4]
|
E. J. Buskey and D. A. Stockwell, Effects of a persistent "brown tide" on zooplankton populations in the Laguna Madre of south Texas, Toxic Phytoplankton Blooms in the Sea, (1993), 659–666.
|
[5]
|
S. J. Du Plooy, N. K. Carrasco and R. Perissinotto, Effects of zooplankton grazing on the bloom-forming Cyanothece sp. in a subtropical estuarine lake, J. Plankton Res., 39 (2017), 826-835.
doi: 10.1093/plankt/fbx039.
|
[6]
|
S. P. Epperly and S. W. Ross, Characterization of the North Carolina Pamlico-Albemarle estuarine complex, Estuarine Ecol., 1986.
|
[7]
|
J. A. Freund, S. Mieruch and B. Scholze et al., Bloom dynamics in a seasonally forced phytoplankton-zooplankton model: Trigger mechanisms and timing effects, Ecol. Complex., 3 (2006), 129-139.
doi: 10.1016/j.ecocom.2005.11.001.
|
[8]
|
R. E. Fuhrman, History of water pollution control, J. Water Pollut. Con. F., 56 (1984), 306-313.
|
[9]
|
J. C. Goldman and E. Carpenter, A kinetic approach to the effect of temperature on algal growth, Limnol. Oceanogr., 19 (1974), 756-766.
|
[10]
|
S. M. Z. Hossain, N. Al-Bastaki and A. M. A. Alnoaimi et al., Mathematical modeling of temperature effect on algal growth for biodiesel application, Renewable Energy and Environ. Sustainability, 4 (2019), 517-528.
doi: 10.1007/978-3-030-18488-9_41.
|
[11]
|
C. Hribar, Understanding concentrated animal feeding operations and their impact on communities, The National Assoc. of Local Boards of Health, 2010.
|
[12]
|
J. Kravchenko, S. H. Rhew and I. Akushevich et al., Mortality and health outcomes in North Carolina communities located in close proximity to hog concentrated animal feeding operations, NC Med. J., 79 (2018), 278-288.
doi: 10.18043/ncm.79.5.278.
|
[13]
|
M. A. Mallin, Impacts of industrial animal production on rivers and estuaries: Animal-waste lagoons and sprayfields near aquatic environments may significantly degrade water quality and endanger health, Am. Sci., 88 (2000), 26-37.
|
[14]
|
S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing globaluncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178-196.
doi: 10.1016/j.jtbi.2008.04.011.
|
[15]
|
D. F. Martin, M. T. Doij and C. B. Stackhouse, Biocontrol of the Florida red tide organism, Gymnodinium breve, through predator organisms, Environ. Lett., 4 (1973), 297-301.
doi: 10.1080/00139307309435500.
|
[16]
|
W. D. McBride and N. Key, US hog production from 1992 to 2009: Technology, restructuring, and productivity growth, USDA Econ. Res. Report, 158 (2013).
|
[17]
|
A. Shirota, Red tide problem and countermeasures, Int. J. Aquaculture and Fisheries Tech., 1 (1989), 195-293.
|
[18]
|
J. B. Shukla, A. K. Misra and P. Chandra, Modeling and analysis of the algal bloom in a lake caused by discharge of nutrients, Appl. Math. Comput., 196 (2008), 782-790.
doi: 10.1016/j.amc.2007.07.010.
|
[19]
|
V. H. Smith, Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment, Limnol. Oceanogr., 51 (2006), 377-384.
doi: 10.4319/lo.2006.51.1_part_2.0377.
|
[20]
|
K. A. Steidinger, A re-evaluation of toxic dinoflagellate biology and ecology, Prog. Phycol. Res., 2 (1983), 147-188.
|
[21]
|
M. Swinker, Human health effects of hog waste, NC Med. J., 59 (1998), 16-18.
|
[22]
|
J. M. Testa, Y. Li and Y. J. Lee et al., Quantifying the effects of nutrient loading on dissolved O2 cycling and hypoxia in Chesapeake Bay using a couple hydrodynamic-biogeochemical model, J. Marine Syst., 139 (2014), 139-158.
|
[23]
|
J. E. Truscott and J. Brindley, Ocean plankton populations as excitable media, Bull. Math. Biol., 56 (1994), 981-998.
|
[24]
|
S. Wing, D. Cole and G. Grant, Environmental injustice in North Carolina's hog industry, Environ. Health Persp., 108 (2000), 225-231.
doi: 10.1289/ehp.00108225.
|
[25]
|
S. Wing, S. Freedman and L. Band, The potential impact of flooding on confined animal feeding operations in eastern north carolina, Environ. Health Persp., 110 (2002), 387-391.
doi: 10.1289/ehp.02110387.
|
[26]
|
J. Zhao and Y. Yan, Dynamics of a seasonally forced phytoplankton-zooplankton model with impulsive biological control, Discrete Dyn. Nat. Soc., 2016 (2016).
doi: 10.1155/2016/2560195.
|
[27]
|
What Are Phytoplankton?, Available from: https://oceanservice.noaa.gov/facts/phyto.html.
|
[28]
|
North Carolina Department of Environmental Quality: MajorHydro, Available from: http://data-ncdenr.opendata.arcgis.com/datasets/majorhydro.
|
[29]
|
North Carolina Department of Environmental Quality: List of Permitted Animal Facilities, Available from: https://deq.nc.gov/cafo-map.
|
[30]
|
TIGER/Line Shapefiles, Available from: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html.
|
[31]
|
Zooplankton Vs. Phytoplankton, Available from: https://sciencing.com/zooplankton-vs-phytoplankton-5432413.html.
|