In this paper, we extend the variational problem of Herglotz considering the case where the Lagrangian depends not only on the independent variable, an unknown function $ x $ and its derivative and an unknown functional $ z $, but also on the end points conditions and a real parameter. Herglotz's problems of calculus of variations of this type cannot be solved using the standard theory. Main results of this paper are necessary optimality condition of Euler-Lagrange type, natural boundary conditions and the Dubois-Reymond condition for our non-standard variational problem of Herglotz type. We also prove a necessary optimality condition that arises as a consequence of the Lagrangian dependence of the parameter. Our results not only provide a generalization to previous results, but also give some other interesting optimality conditions as special cases. In addition, two examples are given in order to illustrate our results.
Citation: |
[1] |
L. Abrunheiro, L. Machado and N. Martins, The Herglotz variational problem on spheres and its optimal control approach, J. Math. Anal., 7 (2016), 12-22.
![]() ![]() |
[2] |
R. Almeida and A. B. Malinowska, Fractional variational principle of Herglotz, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2367-2381.
doi: 10.3934/dcdsb.2014.19.2367.![]() ![]() ![]() |
[3] |
P. A. F. Cruz, D. F. M. Torres and A. S. I. Zinober, A non-classical class of variational problems, Int. J. Mathematical Modelling and Numerical Optimisation, 1 (2010), 227-236.
![]() |
[4] |
B. Georgieva, Symmetries of the Herglotz variational principle in the case of one independent variable, Annuaire Univ. Sofia Fac. Math. Inform., 100 (2010), 113-122.
![]() ![]() |
[5] |
B. Georgieva and R. Guenther, First Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 20 (2002), 261-273.
doi: 10.12775/TMNA.2002.036.![]() ![]() ![]() |
[6] |
B. Georgieva and R. Guenther, Second Noether-type theorem for the generalized variational principle of Herglotz, Topol. Methods Nonlinear Anal., 26 (2005), 307-314.
doi: 10.12775/TMNA.2005.034.![]() ![]() ![]() |
[7] |
B. Georgieva, R. Guenther and T. Bodurov, Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem, J. Math. Phys., 44 (2003), 3911-3927.
doi: 10.1063/1.1597419.![]() ![]() ![]() |
[8] |
R. B. Guenther and J. A. Gottsch, The Herglotz lectures on contact transformations and Hamiltonian systems, Juliusz Schauder Center for Nonlinear Studies, Nicholas Copernicus University, Torún, 1 (1996).
![]() |
[9] |
R. B. Guenther, J. A. Gottsch and D. B. Kramer, The Herglotz algorithm for constructing canonical transformations, SIAM Rev., 38 (1996), 287-293.
doi: 10.1137/1038042.![]() ![]() ![]() |
[10] |
G. Herglotz, Berührungstransformationen, Lectures at the University of Göttingen, Göttingen, 1930.
![]() |
[11] |
K. A. Hoffman, Stability results for constrained calculus of variations problems: An analysis of the twisted elastic loop, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 1357-1381.
doi: 10.1098/rspa.2004.1435.![]() ![]() ![]() |
[12] |
L. Machado, L. Abrunheiro and N. Martins, Variational and optimal control approaches for the second-order Herglotz problem on spheres, J. Optim. Theory Appl., 182 (2019), 965-983.
doi: 10.1007/s10957-018-1424-0.![]() ![]() ![]() |
[13] |
A. B. Malinowska and D. F. M. Torres, Natural boundary conditions in the calculus of variations, Math. Methods Appl. Sci., 33 (2010), 1712-1722.
doi: 10.1002/mma.1289.![]() ![]() ![]() |
[14] |
J. C. Orum, R. T. Hudspeth, W. Black and R. B. Guenther, Extension of the Herglotz algorithm to nonautonomous canonical transformations, SIAM Rev., 42 (2000), 83-90.
doi: 10.1137/S003614459834762X.![]() ![]() ![]() |
[15] |
S. P. S. Santos, N. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz type, Vietnam J. Math., 42 (2014), 409-419.
doi: 10.1007/s10013-013-0048-9.![]() ![]() ![]() |
[16] |
S. P. S. Santos, N. Martins and D. F. M. Torres, Variational problems of Herglotz type with time delay: Dubois-Reymond condition and Noether's first theorem, Discrete Contin. Dyn. Syst., 35 (2015), 4593-4610.
doi: 10.3934/dcds.2015.35.4593.![]() ![]() ![]() |
[17] |
S. P. S. Santos, N. Martins and D. F. M. Torres, Noether's theorem for higher-order variational problems of Herglotz type, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl., 2015 (2015), 990-999.
doi: 10.3934/proc.2015.990.![]() ![]() ![]() |
[18] |
S. P. S. Santos, N. Martins and D. F. M. Torres, Higher-order variational problems of Herglotz with time delay, Pure Appl. Funct. Anal., 1 (2016), 291-307.
![]() ![]() |
[19] |
S. P. S. Santos, N. Martins and D. F. M. Torres, Noether currents for higher-order variational problems of Herglotz type with time delay, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 91-102.
doi: 10.3934/dcdss.2018006.![]() ![]() ![]() |
[20] |
D. Tavares, R. Almeida and D. F. M. Torres, Fractional Herglotz variational problems of variable order, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 143-154.
doi: 10.3934/dcdss.2018009.![]() ![]() ![]() |
[21] |
X. Tian and Y. Zhang, Noether's theorem for fractional Herglotz variational principle in phase space, Chaos Solitons and Fractals, 119 (2019), 50-54.
doi: 10.1016/j.chaos.2018.12.005.![]() ![]() ![]() |
[22] |
B. van Brunt, The Calculus of Variations, Universitext, Springer-Verlag, New York, 2004.
doi: 10.1007/b97436.![]() ![]() ![]() |
[23] |
Y. Zhang and X. Tian, Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem, Phys. Lett. A, 383 (2019), 691-696.
doi: 10.1016/j.physleta.2018.11.034.![]() ![]() ![]() |
[24] |
A. Zinober and S. Sufahani, A non-standard optimal control problem arising in an economics application, Pesqui. Oper., 33 (2013).
doi: 10.1590/S0101-74382013000100004.![]() ![]() |