doi: 10.3934/dcdss.2021159
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Global existence for equivalent nonlinear special scale invariant damped wave equations

Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Via Amendola 173 70125 Bari, Italy

Received  August 2021 Revised  October 2021 Early access December 2021

In this paper we give the notion of equivalent damped wave equations. As an application we study global in time existence for the solution of special scale invariant damped wave equation with small data. To gain such results, without radial assumption, we deal with Klainerman vector fields. In particular we can treat some potential behind the forcing term.

Citation: Sandra Lucente. Global existence for equivalent nonlinear special scale invariant damped wave equations. Discrete and Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021159
References:
[1]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations, Math. Methods Appl. Sci., 38 (2015), 1032-1045.  doi: 10.1002/mma.3126.

[2]

M. D'Abbicco and S. Lucente, NLWE with a special scale invariant damping in odd space dimension, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications, AIMS Conference. Suppl. 10 (2015), 312–319. doi: 10.3934/proc.2015.0312.

[3]

M. D'AbbiccoS. Lucente and M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping, J. Differential Equations, 259 (2015), 5040-5073.  doi: 10.1016/j.jde.2015.06.018.

[4]

R. Glassey, Existence in the large for $ (\partial_t^2-\Delta)u=F(u)$ in two space dimensions, Math. Z., 178 (1981), 233-261.  doi: 10.1007/BF01262042.

[5]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235-268.  doi: 10.1007/BF01647974.

[6]

M. Kato and M. Sakuraba, Global existence and blow-up for semilinear damped wave equations in three space dimensions, Nonlinear Anal., 182 (2019), 209-225.  doi: 10.1016/j.na.2018.12.013.

[7]

S. Klainerman, Uniform decay estimates and Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math, 38 (1985), 321-332.  doi: 10.1002/cpa.3160380305.

[8]

T. Li and X. Yu, Lifespan of classical solutions to fully nonlinear wave equations, Comm. Partial Differential Equations, 16 (1991), 909-940.  doi: 10.1080/03605309108820785.

[9]

W. Nunes do NascimentoA. Palmieri and M. Reissig, Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation, Math. Nachr., 290 (2017), 1779-1805.  doi: 10.1002/mana.201600069.

[10]

A. Palmieri, Global existence of solutions for semi-linear wave equation with scale-invariant damping and mass in exponentially weighted spaces, J. Math. Anal. Appl., 461 (2018), 1215-1240.  doi: 10.1016/j.jmaa.2018.01.063.

[11]

A. Palmieri, A global existence result for a semilinear scale-invariant wave equation in even dimension, Math. Methods Appl. Sci., 42 (2019), 2680-2706.  doi: 10.1002/mma.5542.

[12]

A. Palmieri, Global existence results for a semilinear wave equation with scale-invariant damping and mass in odd space dimension, New Tools for Nonlinear PDEs and Application, (2019), 305-369.  doi: 10.1007/978-3-030-10937-0_12.

[13]

A. Palmieri and M. Reissig, Semi–linear wave models with power non–linearity and scale–invariant time–dependent mass and dissipation Ⅱ, Math. Nachr., 291 (2018), 1859-1892.  doi: 10.1002/mana.201700144.

[14]

Y. Zhou, Cauchy problem for semilinear wave equations in four space dimensions with small initial data, J. Partial Differential Equations, 8 (1995), 135-144. 

show all references

References:
[1]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations, Math. Methods Appl. Sci., 38 (2015), 1032-1045.  doi: 10.1002/mma.3126.

[2]

M. D'Abbicco and S. Lucente, NLWE with a special scale invariant damping in odd space dimension, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications, AIMS Conference. Suppl. 10 (2015), 312–319. doi: 10.3934/proc.2015.0312.

[3]

M. D'AbbiccoS. Lucente and M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping, J. Differential Equations, 259 (2015), 5040-5073.  doi: 10.1016/j.jde.2015.06.018.

[4]

R. Glassey, Existence in the large for $ (\partial_t^2-\Delta)u=F(u)$ in two space dimensions, Math. Z., 178 (1981), 233-261.  doi: 10.1007/BF01262042.

[5]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235-268.  doi: 10.1007/BF01647974.

[6]

M. Kato and M. Sakuraba, Global existence and blow-up for semilinear damped wave equations in three space dimensions, Nonlinear Anal., 182 (2019), 209-225.  doi: 10.1016/j.na.2018.12.013.

[7]

S. Klainerman, Uniform decay estimates and Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math, 38 (1985), 321-332.  doi: 10.1002/cpa.3160380305.

[8]

T. Li and X. Yu, Lifespan of classical solutions to fully nonlinear wave equations, Comm. Partial Differential Equations, 16 (1991), 909-940.  doi: 10.1080/03605309108820785.

[9]

W. Nunes do NascimentoA. Palmieri and M. Reissig, Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation, Math. Nachr., 290 (2017), 1779-1805.  doi: 10.1002/mana.201600069.

[10]

A. Palmieri, Global existence of solutions for semi-linear wave equation with scale-invariant damping and mass in exponentially weighted spaces, J. Math. Anal. Appl., 461 (2018), 1215-1240.  doi: 10.1016/j.jmaa.2018.01.063.

[11]

A. Palmieri, A global existence result for a semilinear scale-invariant wave equation in even dimension, Math. Methods Appl. Sci., 42 (2019), 2680-2706.  doi: 10.1002/mma.5542.

[12]

A. Palmieri, Global existence results for a semilinear wave equation with scale-invariant damping and mass in odd space dimension, New Tools for Nonlinear PDEs and Application, (2019), 305-369.  doi: 10.1007/978-3-030-10937-0_12.

[13]

A. Palmieri and M. Reissig, Semi–linear wave models with power non–linearity and scale–invariant time–dependent mass and dissipation Ⅱ, Math. Nachr., 291 (2018), 1859-1892.  doi: 10.1002/mana.201700144.

[14]

Y. Zhou, Cauchy problem for semilinear wave equations in four space dimensions with small initial data, J. Partial Differential Equations, 8 (1995), 135-144. 

[1]

Marcello D'Abbicco. Small data solutions for semilinear wave equations with effective damping. Conference Publications, 2013, 2013 (special) : 183-191. doi: 10.3934/proc.2013.2013.183

[2]

Bingbing Ding, Ingo Witt, Huicheng Yin. Blowup time and blowup mechanism of small data solutions to general 2-D quasilinear wave equations. Communications on Pure and Applied Analysis, 2017, 16 (3) : 719-744. doi: 10.3934/cpaa.2017035

[3]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011

[4]

Nazar Arakelian, Saeed Tafazolian, Fernando Torres. On the spectrum for the genera of maximal curves over small fields. Advances in Mathematics of Communications, 2018, 12 (1) : 143-149. doi: 10.3934/amc.2018009

[5]

Stefania Fanali, Massimo Giulietti, Irene Platoni. On maximal curves over finite fields of small order. Advances in Mathematics of Communications, 2012, 6 (1) : 107-120. doi: 10.3934/amc.2012.6.107

[6]

Simeon Ball, Guillermo Gamboa, Michel Lavrauw. On additive MDS codes over small fields. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021024

[7]

Robert Granger, Thorsten Kleinjung, Jens Zumbrägel. Indiscreet logarithms in finite fields of small characteristic. Advances in Mathematics of Communications, 2018, 12 (2) : 263-286. doi: 10.3934/amc.2018017

[8]

László Mérai, Igor E. Shparlinski. Unlikely intersections over finite fields: Polynomial orbits in small subgroups. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1065-1073. doi: 10.3934/dcds.2020070

[9]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[10]

Vando Narciso. On a Kirchhoff wave model with nonlocal nonlinear damping. Evolution Equations and Control Theory, 2020, 9 (2) : 487-508. doi: 10.3934/eect.2020021

[11]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure and Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[12]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015

[13]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. On small data scattering of Hartree equations with short-range interaction. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1809-1823. doi: 10.3934/cpaa.2016016

[14]

Mary Chern, Barbara Lee Keyfitz. The unsteady transonic small disturbance equation: Data on oblique curves. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4213-4225. doi: 10.3934/dcds.2016.36.4213

[15]

Paolo Maremonti. A note on the Navier-Stokes IBVP with small data in $L^n$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 255-267. doi: 10.3934/dcdss.2016.9.255

[16]

Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973

[17]

Changhun Yang. Scattering results for Dirac Hartree-type equations with small initial data. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1711-1734. doi: 10.3934/cpaa.2019081

[18]

Paschalis Karageorgis. Small-data scattering for nonlinear waves with potential and initial data of critical decay. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 87-106. doi: 10.3934/dcds.2006.16.87

[19]

David J. W. Simpson. On resolving singularities of piecewise-smooth discontinuous vector fields via small perturbations. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3803-3830. doi: 10.3934/dcds.2014.34.3803

[20]

Ghalip Abdukerim, Eziz Tursun, Yating Yang, Xiao Li. Uyghur morphological analysis using joint conditional random fields: Based on small scaled corpus. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 823-836. doi: 10.3934/dcdss.2019055

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (266)
  • HTML views (153)
  • Cited by (0)

Other articles
by authors

[Back to Top]