\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A novel bond stress-slip model for 3-D printed concretes

Abstract / Introduction Full Text(HTML) Figure(7) / Table(6) Related Papers Cited by
  • This paper considers the 3D printing process as a discontinuous control system and gives a simple and coherent bond stress-slip model for a new and intelligent building 3-D printed concrete. The previous models focused on either the maximal stress or the maximal slip, however, the novel model uses an energy approach by the dimension analysis, so that the main factors affecting the bond stress-slip relationship can be clearly revealed, mainly including the concrete's properties (its porous structure and its strength), the steel bar's properties (its printing direction, its strength, its surface roughness and its geometrical property) and the printing process. It is confirmed that the proposed model, similar to the constitutive relationship in elasticity, plays a key role in concrete mechanics, and it can conveniently explain the observed phenomena from the experiment.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Sketch of test specimen (unit: mm)

    Figure 2.  Cubic specimen

    Figure 3.  Test loading device

    Figure 4.  Damaged shape of specimen (The main damage of the specimen is the split failure, and the pull-out failure mainly occurred in the specimens with the 45 printing direction) (a) Herringbone splitting (b) In-line splitting (c) Pull out

    Figure 5.  Bond stress-slip relationship

    Figure 6.  Printing direction

    Figure 7.  Nonlinear bond stress-slip relationship [21]

    Table 1.  Main chemical components of cementitious materials wt. %

    Component Na$ _{2} $O MgO Al$ _{2} $O$ _{3} $ SiO$ _{2} $ P$ _{2} $O$ _{5} $ SO$ _{3} $ Cl K$ _{2} $O FeO$ _{3} $ TiO$ _{2} $ SrO
    Cement 0.08 0.65 4.65 20.9 0.12 2.65 0.05 0.87 65.00 3.23 0.22
     | Show Table
    DownLoad: CSV

    Table 2.  Mix ratio of 3D printed concrete (wt. %)

    Water-cement ratio cement Early Strength Agent Sand Fly ash Silica Fume Cellulase PVA Water reducing agent
    0.3 26.6% 2.66% 66.46% 2.68% 1.34% 0.027% 0.0225% 0.186%
     | Show Table
    DownLoad: CSV

    Table 3.  Mechanical properties of the casted and printed concretes

    Samples Compressive strength
    Casted concrete 50.2 MPa
    Printed concrete X-direction 37.7 MPa
    Y-direction 42.9 MPa
    Z-direction 40.0 MPa
     | Show Table
    DownLoad: CSV

    Table 4.  Mechanical properties of steel bars

    Rebar typeDiameter (mm) Yield Strength (MPa) Ultimate strength (MPa) Strain Elastic Modulus (MPa)
    HRB400 10 330 400 14% 2.00$\times$10$^{5}$
     | Show Table
    DownLoad: CSV

    Table 5.  Pull-out test results of 3D printed concrete

    Samples Rebar type $\tau_\text{max}$ (MPa) $s_\text{max}$ (mm) $\tau_\text{max}s_\text{max}$ (MPa$^{*}$mm) Average (MPa$^{*}$mm)
    Our group Casted sample HRB400 10.13 0.933 9.4512 9.4512
    Parallelly printed samples 8.75 0.93 8.1375 8.1375
    Vertically printed samples 8.22 0.99 8.1378 8.1378
    Inclined printed samples with 45° 6.15 0.80 4.92 4.92
    Ref. [40] Casted samples BFRP Unsmooth bar 26.57 0.54 14.3478 16.7413
    28.17 0.59 16.6203
    28.74 0.67 19.2558
    BFRP Smooth bar 23.94 1.35 19.36953 22.86019
    25.71 1.42 23.60083
    24.82 1.33 25.61021
    Parallelly printed samples BFRP Unsmooth bar 22.81 0.49 11.1769 12.37963
    24.27 0.56 13.5912
    23.79 0.52 12.3708
    BFRP Smooth bar 21.35 1.29 14.4182 16.80665
    22.79 1.32 17.94038
    21.42 1.46 18.06137
    Vertically printed samples BFRP Unsmooth bar 20.48 0.52 10.6496 10.47707
    20.65 0.48 9.912
    19.41 0.56 10.8696
    BFRP Smooth bar 13.51 1.01 10.7561 12.68027
    18.84 1.36 13.48032
    18.91 1.27 13.80439
    Inclined printed samples with 45° BFRP Unsmooth bar 23.59 0.58 13.6822 12.42147
    22.58 0.49 11.0642
    22.76 0.55 12.518
    BFRP Smooth bar 15.46 1.37 18.74461 16.44966
    20.07 1.25 13.83025
    21.94 1.34 16.77412
     | Show Table
    DownLoad: CSV

    Table 6.  Effects of bars property and concretes property on the bond stress-slip relationship

    Samples D mm $\tau_\text{max}$ MPa $s_\text{max}$ mm $\tau_\text{max}s_\text{max}$ MPa.mm L mm DL mm$^{2}$ $\tau_\text{concrete}$ MPa $\tau_\text{max}s_\text{max}$/ ($\tau_\text{concrete} L$)
    Casted 10.0 10.13 0.93 9.4512 60 600 50.2 0.003137848
    Parallelly 8.75 0.93 8.1375 42.9 0.003161421
    Vertically 8.22 0.99 8.1378 37.7 0.003597612
    Ref.[45] 9.6 15.88 2.23 35.4124 48 461 37.7 0.019569187
    10.4 18.56 1.68 31.1808 54 557 0.015444947
    Ref.[46] 8.0 19.49 1.50 29.2350 40 320 36.3 0.020139846
    12.0 17.75 3.14 55.7350 60 720 0.025597042
    8.0 21.09 1.77 37.3293 20 160 0.051431937
    12.0 20.27 2.30 46.6210 30 360 0.042822632
    Ref.[28] 16.0 16.42 3.72 61.0517 80 1280 35.0 0.021804189
    16.0 18.06 2.15 38.7929 80 1280 35.0 0.013854600
    16.0 11.11 3.47 38.5517 80 1280 42.5 0.011338735
    16.0 14.81 4.92 72.8652 80 1280 55.5 0.016411081
    16.0 17.36 2.67 46.3512 80 1280 60.9 0.009513793
    Ref.[13] 12.0 16.48 1.08 17.7984 60 720 30.0 0.009888000
    12.0 20.43 1.50 30.6450 60 720 0.017025000
    8.0 19.03 0.32 6.08960 40 320 0.005074667
    Ref.[29] 10.0 20.00 0.91 18.2000 7.8 78.3 30 0.077479779
    8.0 50.00 1.12 56.0000 19.5 156 20 0.143589744
    12.0 90.00 1.90 171.000 16.45 197.4 40 0.259878419
    Ref.[26] 10.0 13.52 3.20 43.2640 50 500 35.3 0.024512181
    10.0 16.33 2.72 44.4176 100 1000 0.012582890
    10.0 14.58 0.65 9.47700 150 1500 0.001789802
     | Show Table
    DownLoad: CSV
  • [1] Q. T. Ain and J.-H. He, On two-scale dimension and its applications, Thermal Science, 23 (2019), 1707-1712.  doi: 10.2298/TSCI190408138A.
    [2] A. M. Ali, L. Dieng and R. Masmoudi, Experimental, analytical and numerical assessment of the bond-slip behaviour in concrete-filled-frp tubes, Engineering Structures, 225 (2020) 111254. doi: 10.1016/j.engstruct.2020.111254.
    [3] L. BaiJ. YuM. Zhang and T. Zhou, Experimental study on the bond behavior between H-shaped steel and engineered cementitious composites, Construction and Building Materials, 196 (2019), 214-232.  doi: 10.1016/j.conbuildmat.2018.11.117.
    [4] B. BazG. Aouad and S. Remond, Effect of the printing method and mortar's workability on pull-out strength of 3d printed elements, Construction and Building Materials, 230 (2020), 117002.  doi: 10.1016/j.conbuildmat.2019.117002.
    [5] S. Chu and A. Kwan, A new bond model for reinforcing bars in steel fibre reinforced concrete, Cement and Concrete Composites, 104 (2019), 103405.  doi: 10.1016/j.cemconcomp.2019.103405.
    [6] A. Elias-Zuniga, L. M. Palacios-Pineda, O. Martinez-Romero and D. Olvera Trejo, Dynamics response of the forced fangzhu fractal device for water collection from air, Fractals, 29 (2021). doi: 10.1142/S0218348X21501863.
    [7] M. EmadiH. Beheshti and M. Heidari-Rarani, Multi-objective optimization of hybrid aluminum–composite tube under axial crushing, International Journal of Applied Mechanics, 12 (2020), 2050042.  doi: 10.1142/S1758825120500428.
    [8] J. A. Estrada-DíazD. Olvera-TrejoA. Elías-Zúñiga and O. Martínez-Romero, A mathematical dimensionless model for electrohydrodynamics, Results in Physics, 25 (2021), 104256. 
    [9] P. FengX. MengJ.-F. Chen and L. Ye, Mechanical properties of structures 3d printed with cementitious powders, Construction and Building Materials, 93 (2015), 486-497.  doi: 10.1016/j.conbuildmat.2015.05.132.
    [10] C. Fragassa and P. E. Minak, Mechanical characterisation of photopolymer resins for rapid prototyping, Proceedings of the 27th Danubia-Adria Symposium on Advances in Experimental Mechanics, DAS, 22-25 Sept., Wroclaw. Code 125161 (2010) 55–56.
    [11] R. García-AlvaradoG. Moroni-Orellana and P. Banda-Pérez, Architectural evaluation of 3d-printed buildings, Buildings, 11 (2021), 254.  doi: 10.3390/buildings11060254.
    [12] R. F. Ghachi, W. I. Alnahhal, O. Abdeljaber, J. Renno, A. Tahidul Haque, J. Shim and A. Aref, Optimization of viscoelastic metamaterials for vibration attenuation properties, International Journal of Applied Mechanics, 12 (2020). doi: 10.1142/S1758825120501161.
    [13] M. HassanB. BenmokraneA. ElSafty and A. Fam, Bond durability of basalt-fiber-reinforced-polymer (bfrp) bars embedded in concrete in aggressive environments, Composites Part B: Engineering, 106 (2016), 262-272.  doi: 10.1016/j.compositesb.2016.09.039.
    [14] C.-H. He, J.-H. He and H. M. Sedighi, Fangzhu: An ancient chinese nanotechnology for water collection from air: History, mathematical insight, promises, and challenges, Mathematical Methods in the Applied Sciences, 2020. doi: 10.1002/mma.6384.
    [15] C.-H. HeC. LiuJ.-H. HeA. H. Shirazi and H. Mohammad-Sedighi, Passive atmospheric water harvesting utilizing an ancient chinese ink slab, Facta Universitatis, Series: Mechanical Engineering, 19 (2021), 229-239.  doi: 10.22190/FUME201203001H.
    [16] J.-H. He, Seeing with a single scale is always unbelieving: From magic to two-scale fractal, Thermal Science, 25 (2021), 1217-1219.  doi: 10.2298/TSCI2102217H.
    [17] J.-H. He, A new proof of the dual optimization problem and its application to the optimal material distribution of sic/graphene composite, Reports in Mechanical Engineering, 1 (2020), 187-191.  doi: 10.31181/rme200101187h.
    [18] J.-H. He and Q.-T. Ain, New promises and future challenges of fractal calculus: From two-scale thermodynamics to fractal variational principle, Thermal Science, 24 (2020), 659-681.  doi: 10.2298/TSCI200127065H.
    [19] J.-H. He and Y. O. El-Dib, Homotopy perturbation method for Fangzhu oscillator, J. Mathematical Chemistry, 58 (2020), 2245-2253.  doi: 10.1007/s10910-020-01167-6.
    [20] J.-H. He and Y. O. El-Dib, Homotopy perturbation method with three expansions for Helmholtz-Fangzhu oscillator, Internat. J. Modern Phys. B, 35 (2021), 2150244.  doi: 10.1142/S0217979221502441.
    [21] S. Hong and S.-K. Park, Uniaxial bond stress-slip relationship of reinforcing bars in concrete, Advances in Materials Science and Engineering, 2012 (2012). doi: 10.1155/2012/328570.
    [22] M. Hoseini Asl and J. Jafari Fesharaki, 3d optimization of gear train layout using particle swarm optimization algorithm, Journal of Applied and Computational Mechanics, 6 (2020), 823-840. 
    [23] X. HuG. PengD. NiuX. Wu and L. Zhang, Bond behavior between deformed steel bars and cementitious grout, Construction and Building Materials, 262 (2020), 120810.  doi: 10.1016/j.conbuildmat.2020.120810.
    [24] M. IslamA. SadafM. R. GómezD. MagerJ. G. Korvink and A. D. Lantada, Carbon fiber/microlattice 3d hybrid architecture as multi-scale scaffold for tissue engineering, Materials Science and Engineering: C, 126 (2021), 112140.  doi: 10.1016/j.msec.2021.112140.
    [25] O. Leibovich and D. Z. Yankelevsky, Nonlinear features of the bond-slip ascending branch, J. Materials in Civil Engineering, 32 (2020), 04020279.  doi: 10.1061/(ASCE)MT.1943-5533.0003368.
    [26] T. LiH. ZhuQ. WangJ. Li and T. Wu, Experimental study on the enhancement of additional ribs to the bond performance of FRP bars in concrete, Construction and Building Materials, 185 (2018), 545-554.  doi: 10.1016/j.conbuildmat.2018.06.198.
    [27] X.-X. LiD. Tian and J.-H. He, High energy surface as a receptor in electrospinning: A good switch for hydrophobicity to hydrophilicity, Thermal Science, 25 (2021), 2205-2212.  doi: 10.2298/TSCI191120107L.
    [28] H. LiuJ. Yang and X. Wang, Bond behavior between BFRP bar and recycled aggregate concrete reinforced with basalt fiber, Construction and Building Materials, 135 (2017), 477-483.  doi: 10.1016/j.conbuildmat.2016.12.161.
    [29] W.-J. MengH.-X. LiuG.-J. LiuX.-Q. Kong and X.-Z. Wang, Bond-slip constitutive relation between bfrp bar and basalt fiber recycled-aggregate concrete, KSCE Journal of Civil Engineering, 20 (2016), 1996-2006.  doi: 10.1007/s12205-015-0350-z.
    [30] J. Patdiya and B. Kandasubramanian, Progress in 4d printing of stimuli responsive materials, Polymer-Plastics Technology and Materials, (2021), 1–39.
    [31] A. Pavlovic and C. Fragassa, Geometry optimization by fem simulation of the automatic changing gear, Reports in Mechanical Engineering, 1 (2020), 199-205.  doi: 10.31181/rme200101199p.
    [32] V. T. PintoL. A. Oliveira RochaC. FragassaE. Domingues Dos Santos and L. A. Isoldi, Multiobjective geometric analysis of stiffened plates under bending through constructal design method, Journal of Applied and Computational Mechanics, 6 (2020), 1438-1449. 
    [33] M. RegehlyY. GarmshausenM. ReuterN. F. KönigE. IsraelD. P. KellyC.-Y. ChouK. KochB. Asfari and S. Hecht, Xolography for linear volumetric 3d, Printing Nature, 588 (2020), 620-624. 
    [34] M. RossiC. Calderini and S. Lagomarsino, Experimental testing of the seismic in-plane displacement capacity of masonry cross vaults through a scale model, Bulletin of Earthquake Engineering, 14 (2016), 261-281.  doi: 10.1007/s10518-015-9815-1.
    [35] J. Sebo and J. Busa Jr, Comparison of advanced methods for picking path optimization: Case study of dual-zone warehouse, Int J. Simul Model, 19 (2020), 410-421.  doi: 10.2507/IJSIMM19-3-521.
    [36] H. M. Sedighi and K. H. Shirazi, Using homotopy analysis method to determine profile for disk cam by means of optimization of dissipated energy, International Review of Mechanical Engineering, 5 (2011), 941-946. 
    [37] D. ShenX. ShiH. ZhangX. Duan and G. Jiang, Experimental study of early-age bond behavior between high strength concrete and steel bars using a pull-out test, Construction and Building Materials, 113 (2016), 653-663.  doi: 10.1016/j.conbuildmat.2016.03.094.
    [38] J. SongW. WangS. SuX. DingQ. Luo and C. Quan, Experimental study on the bond-slip performance between concrete and a corrugated steel plate with studs, Engineering Structures, 224 (2020), 111195.  doi: 10.1016/j.engstruct.2020.111195.
    [39] J. SunJ. XiaoZ. Li and X. Feng, Experimental study on the thermal performance of a 3d printed concrete prototype building, Energy and Buildings, 241 (2021), 110965.  doi: 10.1016/j.enbuild.2021.110965.
    [40] X. SunC. Gao and H. Wang, Bond performance between BFRP bars and 3D printed concrete, Construction and Building Materials, 269 (2021), 121325.  doi: 10.1016/j.conbuildmat.2020.121325.
    [41] S. TrohaŽ. VrcanD. Karaivanov and M. Isametova, The selection of optimal reversible two-speed planetary gear trains for machine tool gearboxes, Facta Universitatis, Series: Mechanical Engineering, 18 (2020), 121-134. 
    [42] H. WangJ. ChenX. Sun and C. Gao, Bonding performance between steel wire rope and 3d printed cement-based composites, Journal of Building Structures (in Chinese), 42 (2021), 1-7.  doi: 10.14006/j.jzjgxb.2019.0410.
    [43] K.-L. Wang, Effect of fangzhu's nanoscale surface morphology on water collection, Mathematical Methods in the Applied Sciences, 2020. doi: 10.1002/mma.6569.
    [44] L. WuW. YangY. SunQ. Kang and Z. Wan, Experimental study on the influencing factors of the adhesive property between printed concrete and rebar, Industrial Construction (in Chinese), 262 (2020), 32-38.  doi: 10.13204/j.gyjzG20011603.
    [45] W. Xu, G. Wu et al., Experimental study on the bond behavior between sand spraying frp bars and concrete, Industrial Construction (in Chinese), (2009), 118–121.
    [46] C. Yang and S. Qi, Experimental study on the bond performance between bfrp bars and coral concrete, Engineering Mechanics (in Chinese), 35.
    [47] Q. YuanZ. LiD. ZhouT. HuangH. HuangD. Jiao and C. Shi, A feasible method for measuring the buildability of fresh 3d printing mortar, Construction and Building Materials, 227 (2019), 116600.  doi: 10.1016/j.conbuildmat.2019.07.326.
    [48] Z. ZhengM. Zhang and Z. Liu, Investigation on evaluating the printable height and dimensional stability of food extrusion-based 3d printed foods, Journal of Food Engineering, 306 (2021), 110636.  doi: 10.1016/j.jfoodeng.2021.110636.
    [49] Y.-T. Zuo and H.-J. Liu, Fractal approach to mechanical and electrical properties of graphene/sic composites, Facta Universitatis, Series: Mechanical Engineering, 19 (2021), 271-284.  doi: 10.22190/FUME201212003Z.
  • 加载中

Figures(7)

Tables(6)

SHARE

Article Metrics

HTML views(2761) PDF downloads(388) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return