• Previous Article
    An algorithm for solving linear nonhomogeneous quaternion-valued differential equations and some open problems
  • DCDS-S Home
  • This Issue
  • Next Article
    Positive stability analysis of pseudo almost periodic solutions for HDCNNs accompanying $ D $ operator
July  2022, 15(7): 1669-1683. doi: 10.3934/dcdss.2021161

A novel bond stress-slip model for 3-D printed concretes

1. 

School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, China

2. 

School of Science, Xi'an University of Architecture and Technology, Xi'an, China

3. 

Mechanical Engineering Department, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz 61357-43337, Iran

4. 

Drilling Center of Excellence and Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran

*Corresponding author: chaoliu@xauat.edu.cn (C. Liu) and h.msedighi@scu.ac.ir (H.M. Sedighi)

Received  August 2021 Revised  September 2021 Published  July 2022 Early access  December 2021

This paper considers the 3D printing process as a discontinuous control system and gives a simple and coherent bond stress-slip model for a new and intelligent building 3-D printed concrete. The previous models focused on either the maximal stress or the maximal slip, however, the novel model uses an energy approach by the dimension analysis, so that the main factors affecting the bond stress-slip relationship can be clearly revealed, mainly including the concrete's properties (its porous structure and its strength), the steel bar's properties (its printing direction, its strength, its surface roughness and its geometrical property) and the printing process. It is confirmed that the proposed model, similar to the constitutive relationship in elasticity, plays a key role in concrete mechanics, and it can conveniently explain the observed phenomena from the experiment.

Citation: Chun-Hui He, Shu-Hua Liu, Chao Liu, Hamid Mohammad-Sedighi. A novel bond stress-slip model for 3-D printed concretes. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1669-1683. doi: 10.3934/dcdss.2021161
References:
[1]

Q. T. Ain and J.-H. He, On two-scale dimension and its applications, Thermal Science, 23 (2019), 1707-1712.  doi: 10.2298/TSCI190408138A.

[2]

A. M. Ali, L. Dieng and R. Masmoudi, Experimental, analytical and numerical assessment of the bond-slip behaviour in concrete-filled-frp tubes, Engineering Structures, 225 (2020) 111254. doi: 10.1016/j.engstruct.2020.111254.

[3]

L. BaiJ. YuM. Zhang and T. Zhou, Experimental study on the bond behavior between H-shaped steel and engineered cementitious composites, Construction and Building Materials, 196 (2019), 214-232.  doi: 10.1016/j.conbuildmat.2018.11.117.

[4]

B. BazG. Aouad and S. Remond, Effect of the printing method and mortar's workability on pull-out strength of 3d printed elements, Construction and Building Materials, 230 (2020), 117002.  doi: 10.1016/j.conbuildmat.2019.117002.

[5]

S. Chu and A. Kwan, A new bond model for reinforcing bars in steel fibre reinforced concrete, Cement and Concrete Composites, 104 (2019), 103405.  doi: 10.1016/j.cemconcomp.2019.103405.

[6]

A. Elias-Zuniga, L. M. Palacios-Pineda, O. Martinez-Romero and D. Olvera Trejo, Dynamics response of the forced fangzhu fractal device for water collection from air, Fractals, 29 (2021). doi: 10.1142/S0218348X21501863.

[7]

M. EmadiH. Beheshti and M. Heidari-Rarani, Multi-objective optimization of hybrid aluminum–composite tube under axial crushing, International Journal of Applied Mechanics, 12 (2020), 2050042.  doi: 10.1142/S1758825120500428.

[8]

J. A. Estrada-DíazD. Olvera-TrejoA. Elías-Zúñiga and O. Martínez-Romero, A mathematical dimensionless model for electrohydrodynamics, Results in Physics, 25 (2021), 104256. 

[9]

P. FengX. MengJ.-F. Chen and L. Ye, Mechanical properties of structures 3d printed with cementitious powders, Construction and Building Materials, 93 (2015), 486-497.  doi: 10.1016/j.conbuildmat.2015.05.132.

[10]

C. Fragassa and P. E. Minak, Mechanical characterisation of photopolymer resins for rapid prototyping, Proceedings of the 27th Danubia-Adria Symposium on Advances in Experimental Mechanics, DAS, 22-25 Sept., Wroclaw. Code 125161 (2010) 55–56.

[11]

R. García-AlvaradoG. Moroni-Orellana and P. Banda-Pérez, Architectural evaluation of 3d-printed buildings, Buildings, 11 (2021), 254.  doi: 10.3390/buildings11060254.

[12]

R. F. Ghachi, W. I. Alnahhal, O. Abdeljaber, J. Renno, A. Tahidul Haque, J. Shim and A. Aref, Optimization of viscoelastic metamaterials for vibration attenuation properties, International Journal of Applied Mechanics, 12 (2020). doi: 10.1142/S1758825120501161.

[13]

M. HassanB. BenmokraneA. ElSafty and A. Fam, Bond durability of basalt-fiber-reinforced-polymer (bfrp) bars embedded in concrete in aggressive environments, Composites Part B: Engineering, 106 (2016), 262-272.  doi: 10.1016/j.compositesb.2016.09.039.

[14]

C.-H. He, J.-H. He and H. M. Sedighi, Fangzhu: An ancient chinese nanotechnology for water collection from air: History, mathematical insight, promises, and challenges, Mathematical Methods in the Applied Sciences, 2020. doi: 10.1002/mma.6384.

[15]

C.-H. HeC. LiuJ.-H. HeA. H. Shirazi and H. Mohammad-Sedighi, Passive atmospheric water harvesting utilizing an ancient chinese ink slab, Facta Universitatis, Series: Mechanical Engineering, 19 (2021), 229-239.  doi: 10.22190/FUME201203001H.

[16]

J.-H. He, Seeing with a single scale is always unbelieving: From magic to two-scale fractal, Thermal Science, 25 (2021), 1217-1219.  doi: 10.2298/TSCI2102217H.

[17]

J.-H. He, A new proof of the dual optimization problem and its application to the optimal material distribution of sic/graphene composite, Reports in Mechanical Engineering, 1 (2020), 187-191.  doi: 10.31181/rme200101187h.

[18]

J.-H. He and Q.-T. Ain, New promises and future challenges of fractal calculus: From two-scale thermodynamics to fractal variational principle, Thermal Science, 24 (2020), 659-681.  doi: 10.2298/TSCI200127065H.

[19]

J.-H. He and Y. O. El-Dib, Homotopy perturbation method for Fangzhu oscillator, J. Mathematical Chemistry, 58 (2020), 2245-2253.  doi: 10.1007/s10910-020-01167-6.

[20]

J.-H. He and Y. O. El-Dib, Homotopy perturbation method with three expansions for Helmholtz-Fangzhu oscillator, Internat. J. Modern Phys. B, 35 (2021), 2150244.  doi: 10.1142/S0217979221502441.

[21]

S. Hong and S.-K. Park, Uniaxial bond stress-slip relationship of reinforcing bars in concrete, Advances in Materials Science and Engineering, 2012 (2012). doi: 10.1155/2012/328570.

[22]

M. Hoseini Asl and J. Jafari Fesharaki, 3d optimization of gear train layout using particle swarm optimization algorithm, Journal of Applied and Computational Mechanics, 6 (2020), 823-840. 

[23]

X. HuG. PengD. NiuX. Wu and L. Zhang, Bond behavior between deformed steel bars and cementitious grout, Construction and Building Materials, 262 (2020), 120810.  doi: 10.1016/j.conbuildmat.2020.120810.

[24]

M. IslamA. SadafM. R. GómezD. MagerJ. G. Korvink and A. D. Lantada, Carbon fiber/microlattice 3d hybrid architecture as multi-scale scaffold for tissue engineering, Materials Science and Engineering: C, 126 (2021), 112140.  doi: 10.1016/j.msec.2021.112140.

[25]

O. Leibovich and D. Z. Yankelevsky, Nonlinear features of the bond-slip ascending branch, J. Materials in Civil Engineering, 32 (2020), 04020279.  doi: 10.1061/(ASCE)MT.1943-5533.0003368.

[26]

T. LiH. ZhuQ. WangJ. Li and T. Wu, Experimental study on the enhancement of additional ribs to the bond performance of FRP bars in concrete, Construction and Building Materials, 185 (2018), 545-554.  doi: 10.1016/j.conbuildmat.2018.06.198.

[27]

X.-X. LiD. Tian and J.-H. He, High energy surface as a receptor in electrospinning: A good switch for hydrophobicity to hydrophilicity, Thermal Science, 25 (2021), 2205-2212.  doi: 10.2298/TSCI191120107L.

[28]

H. LiuJ. Yang and X. Wang, Bond behavior between BFRP bar and recycled aggregate concrete reinforced with basalt fiber, Construction and Building Materials, 135 (2017), 477-483.  doi: 10.1016/j.conbuildmat.2016.12.161.

[29]

W.-J. MengH.-X. LiuG.-J. LiuX.-Q. Kong and X.-Z. Wang, Bond-slip constitutive relation between bfrp bar and basalt fiber recycled-aggregate concrete, KSCE Journal of Civil Engineering, 20 (2016), 1996-2006.  doi: 10.1007/s12205-015-0350-z.

[30]

J. Patdiya and B. Kandasubramanian, Progress in 4d printing of stimuli responsive materials, Polymer-Plastics Technology and Materials, (2021), 1–39.

[31]

A. Pavlovic and C. Fragassa, Geometry optimization by fem simulation of the automatic changing gear, Reports in Mechanical Engineering, 1 (2020), 199-205.  doi: 10.31181/rme200101199p.

[32]

V. T. PintoL. A. Oliveira RochaC. FragassaE. Domingues Dos Santos and L. A. Isoldi, Multiobjective geometric analysis of stiffened plates under bending through constructal design method, Journal of Applied and Computational Mechanics, 6 (2020), 1438-1449. 

[33]

M. RegehlyY. GarmshausenM. ReuterN. F. KönigE. IsraelD. P. KellyC.-Y. ChouK. KochB. Asfari and S. Hecht, Xolography for linear volumetric 3d, Printing Nature, 588 (2020), 620-624. 

[34]

M. RossiC. Calderini and S. Lagomarsino, Experimental testing of the seismic in-plane displacement capacity of masonry cross vaults through a scale model, Bulletin of Earthquake Engineering, 14 (2016), 261-281.  doi: 10.1007/s10518-015-9815-1.

[35]

J. Sebo and J. Busa Jr, Comparison of advanced methods for picking path optimization: Case study of dual-zone warehouse, Int J. Simul Model, 19 (2020), 410-421.  doi: 10.2507/IJSIMM19-3-521.

[36]

H. M. Sedighi and K. H. Shirazi, Using homotopy analysis method to determine profile for disk cam by means of optimization of dissipated energy, International Review of Mechanical Engineering, 5 (2011), 941-946. 

[37]

D. ShenX. ShiH. ZhangX. Duan and G. Jiang, Experimental study of early-age bond behavior between high strength concrete and steel bars using a pull-out test, Construction and Building Materials, 113 (2016), 653-663.  doi: 10.1016/j.conbuildmat.2016.03.094.

[38]

J. SongW. WangS. SuX. DingQ. Luo and C. Quan, Experimental study on the bond-slip performance between concrete and a corrugated steel plate with studs, Engineering Structures, 224 (2020), 111195.  doi: 10.1016/j.engstruct.2020.111195.

[39]

J. SunJ. XiaoZ. Li and X. Feng, Experimental study on the thermal performance of a 3d printed concrete prototype building, Energy and Buildings, 241 (2021), 110965.  doi: 10.1016/j.enbuild.2021.110965.

[40]

X. SunC. Gao and H. Wang, Bond performance between BFRP bars and 3D printed concrete, Construction and Building Materials, 269 (2021), 121325.  doi: 10.1016/j.conbuildmat.2020.121325.

[41]

S. TrohaŽ. VrcanD. Karaivanov and M. Isametova, The selection of optimal reversible two-speed planetary gear trains for machine tool gearboxes, Facta Universitatis, Series: Mechanical Engineering, 18 (2020), 121-134. 

[42]

H. WangJ. ChenX. Sun and C. Gao, Bonding performance between steel wire rope and 3d printed cement-based composites, Journal of Building Structures (in Chinese), 42 (2021), 1-7.  doi: 10.14006/j.jzjgxb.2019.0410.

[43]

K.-L. Wang, Effect of fangzhu's nanoscale surface morphology on water collection, Mathematical Methods in the Applied Sciences, 2020. doi: 10.1002/mma.6569.

[44]

L. WuW. YangY. SunQ. Kang and Z. Wan, Experimental study on the influencing factors of the adhesive property between printed concrete and rebar, Industrial Construction (in Chinese), 262 (2020), 32-38.  doi: 10.13204/j.gyjzG20011603.

[45]

W. Xu, G. Wu et al., Experimental study on the bond behavior between sand spraying frp bars and concrete, Industrial Construction (in Chinese), (2009), 118–121.

[46]

C. Yang and S. Qi, Experimental study on the bond performance between bfrp bars and coral concrete, Engineering Mechanics (in Chinese), 35.

[47]

Q. YuanZ. LiD. ZhouT. HuangH. HuangD. Jiao and C. Shi, A feasible method for measuring the buildability of fresh 3d printing mortar, Construction and Building Materials, 227 (2019), 116600.  doi: 10.1016/j.conbuildmat.2019.07.326.

[48]

Z. ZhengM. Zhang and Z. Liu, Investigation on evaluating the printable height and dimensional stability of food extrusion-based 3d printed foods, Journal of Food Engineering, 306 (2021), 110636.  doi: 10.1016/j.jfoodeng.2021.110636.

[49]

Y.-T. Zuo and H.-J. Liu, Fractal approach to mechanical and electrical properties of graphene/sic composites, Facta Universitatis, Series: Mechanical Engineering, 19 (2021), 271-284.  doi: 10.22190/FUME201212003Z.

show all references

References:
[1]

Q. T. Ain and J.-H. He, On two-scale dimension and its applications, Thermal Science, 23 (2019), 1707-1712.  doi: 10.2298/TSCI190408138A.

[2]

A. M. Ali, L. Dieng and R. Masmoudi, Experimental, analytical and numerical assessment of the bond-slip behaviour in concrete-filled-frp tubes, Engineering Structures, 225 (2020) 111254. doi: 10.1016/j.engstruct.2020.111254.

[3]

L. BaiJ. YuM. Zhang and T. Zhou, Experimental study on the bond behavior between H-shaped steel and engineered cementitious composites, Construction and Building Materials, 196 (2019), 214-232.  doi: 10.1016/j.conbuildmat.2018.11.117.

[4]

B. BazG. Aouad and S. Remond, Effect of the printing method and mortar's workability on pull-out strength of 3d printed elements, Construction and Building Materials, 230 (2020), 117002.  doi: 10.1016/j.conbuildmat.2019.117002.

[5]

S. Chu and A. Kwan, A new bond model for reinforcing bars in steel fibre reinforced concrete, Cement and Concrete Composites, 104 (2019), 103405.  doi: 10.1016/j.cemconcomp.2019.103405.

[6]

A. Elias-Zuniga, L. M. Palacios-Pineda, O. Martinez-Romero and D. Olvera Trejo, Dynamics response of the forced fangzhu fractal device for water collection from air, Fractals, 29 (2021). doi: 10.1142/S0218348X21501863.

[7]

M. EmadiH. Beheshti and M. Heidari-Rarani, Multi-objective optimization of hybrid aluminum–composite tube under axial crushing, International Journal of Applied Mechanics, 12 (2020), 2050042.  doi: 10.1142/S1758825120500428.

[8]

J. A. Estrada-DíazD. Olvera-TrejoA. Elías-Zúñiga and O. Martínez-Romero, A mathematical dimensionless model for electrohydrodynamics, Results in Physics, 25 (2021), 104256. 

[9]

P. FengX. MengJ.-F. Chen and L. Ye, Mechanical properties of structures 3d printed with cementitious powders, Construction and Building Materials, 93 (2015), 486-497.  doi: 10.1016/j.conbuildmat.2015.05.132.

[10]

C. Fragassa and P. E. Minak, Mechanical characterisation of photopolymer resins for rapid prototyping, Proceedings of the 27th Danubia-Adria Symposium on Advances in Experimental Mechanics, DAS, 22-25 Sept., Wroclaw. Code 125161 (2010) 55–56.

[11]

R. García-AlvaradoG. Moroni-Orellana and P. Banda-Pérez, Architectural evaluation of 3d-printed buildings, Buildings, 11 (2021), 254.  doi: 10.3390/buildings11060254.

[12]

R. F. Ghachi, W. I. Alnahhal, O. Abdeljaber, J. Renno, A. Tahidul Haque, J. Shim and A. Aref, Optimization of viscoelastic metamaterials for vibration attenuation properties, International Journal of Applied Mechanics, 12 (2020). doi: 10.1142/S1758825120501161.

[13]

M. HassanB. BenmokraneA. ElSafty and A. Fam, Bond durability of basalt-fiber-reinforced-polymer (bfrp) bars embedded in concrete in aggressive environments, Composites Part B: Engineering, 106 (2016), 262-272.  doi: 10.1016/j.compositesb.2016.09.039.

[14]

C.-H. He, J.-H. He and H. M. Sedighi, Fangzhu: An ancient chinese nanotechnology for water collection from air: History, mathematical insight, promises, and challenges, Mathematical Methods in the Applied Sciences, 2020. doi: 10.1002/mma.6384.

[15]

C.-H. HeC. LiuJ.-H. HeA. H. Shirazi and H. Mohammad-Sedighi, Passive atmospheric water harvesting utilizing an ancient chinese ink slab, Facta Universitatis, Series: Mechanical Engineering, 19 (2021), 229-239.  doi: 10.22190/FUME201203001H.

[16]

J.-H. He, Seeing with a single scale is always unbelieving: From magic to two-scale fractal, Thermal Science, 25 (2021), 1217-1219.  doi: 10.2298/TSCI2102217H.

[17]

J.-H. He, A new proof of the dual optimization problem and its application to the optimal material distribution of sic/graphene composite, Reports in Mechanical Engineering, 1 (2020), 187-191.  doi: 10.31181/rme200101187h.

[18]

J.-H. He and Q.-T. Ain, New promises and future challenges of fractal calculus: From two-scale thermodynamics to fractal variational principle, Thermal Science, 24 (2020), 659-681.  doi: 10.2298/TSCI200127065H.

[19]

J.-H. He and Y. O. El-Dib, Homotopy perturbation method for Fangzhu oscillator, J. Mathematical Chemistry, 58 (2020), 2245-2253.  doi: 10.1007/s10910-020-01167-6.

[20]

J.-H. He and Y. O. El-Dib, Homotopy perturbation method with three expansions for Helmholtz-Fangzhu oscillator, Internat. J. Modern Phys. B, 35 (2021), 2150244.  doi: 10.1142/S0217979221502441.

[21]

S. Hong and S.-K. Park, Uniaxial bond stress-slip relationship of reinforcing bars in concrete, Advances in Materials Science and Engineering, 2012 (2012). doi: 10.1155/2012/328570.

[22]

M. Hoseini Asl and J. Jafari Fesharaki, 3d optimization of gear train layout using particle swarm optimization algorithm, Journal of Applied and Computational Mechanics, 6 (2020), 823-840. 

[23]

X. HuG. PengD. NiuX. Wu and L. Zhang, Bond behavior between deformed steel bars and cementitious grout, Construction and Building Materials, 262 (2020), 120810.  doi: 10.1016/j.conbuildmat.2020.120810.

[24]

M. IslamA. SadafM. R. GómezD. MagerJ. G. Korvink and A. D. Lantada, Carbon fiber/microlattice 3d hybrid architecture as multi-scale scaffold for tissue engineering, Materials Science and Engineering: C, 126 (2021), 112140.  doi: 10.1016/j.msec.2021.112140.

[25]

O. Leibovich and D. Z. Yankelevsky, Nonlinear features of the bond-slip ascending branch, J. Materials in Civil Engineering, 32 (2020), 04020279.  doi: 10.1061/(ASCE)MT.1943-5533.0003368.

[26]

T. LiH. ZhuQ. WangJ. Li and T. Wu, Experimental study on the enhancement of additional ribs to the bond performance of FRP bars in concrete, Construction and Building Materials, 185 (2018), 545-554.  doi: 10.1016/j.conbuildmat.2018.06.198.

[27]

X.-X. LiD. Tian and J.-H. He, High energy surface as a receptor in electrospinning: A good switch for hydrophobicity to hydrophilicity, Thermal Science, 25 (2021), 2205-2212.  doi: 10.2298/TSCI191120107L.

[28]

H. LiuJ. Yang and X. Wang, Bond behavior between BFRP bar and recycled aggregate concrete reinforced with basalt fiber, Construction and Building Materials, 135 (2017), 477-483.  doi: 10.1016/j.conbuildmat.2016.12.161.

[29]

W.-J. MengH.-X. LiuG.-J. LiuX.-Q. Kong and X.-Z. Wang, Bond-slip constitutive relation between bfrp bar and basalt fiber recycled-aggregate concrete, KSCE Journal of Civil Engineering, 20 (2016), 1996-2006.  doi: 10.1007/s12205-015-0350-z.

[30]

J. Patdiya and B. Kandasubramanian, Progress in 4d printing of stimuli responsive materials, Polymer-Plastics Technology and Materials, (2021), 1–39.

[31]

A. Pavlovic and C. Fragassa, Geometry optimization by fem simulation of the automatic changing gear, Reports in Mechanical Engineering, 1 (2020), 199-205.  doi: 10.31181/rme200101199p.

[32]

V. T. PintoL. A. Oliveira RochaC. FragassaE. Domingues Dos Santos and L. A. Isoldi, Multiobjective geometric analysis of stiffened plates under bending through constructal design method, Journal of Applied and Computational Mechanics, 6 (2020), 1438-1449. 

[33]

M. RegehlyY. GarmshausenM. ReuterN. F. KönigE. IsraelD. P. KellyC.-Y. ChouK. KochB. Asfari and S. Hecht, Xolography for linear volumetric 3d, Printing Nature, 588 (2020), 620-624. 

[34]

M. RossiC. Calderini and S. Lagomarsino, Experimental testing of the seismic in-plane displacement capacity of masonry cross vaults through a scale model, Bulletin of Earthquake Engineering, 14 (2016), 261-281.  doi: 10.1007/s10518-015-9815-1.

[35]

J. Sebo and J. Busa Jr, Comparison of advanced methods for picking path optimization: Case study of dual-zone warehouse, Int J. Simul Model, 19 (2020), 410-421.  doi: 10.2507/IJSIMM19-3-521.

[36]

H. M. Sedighi and K. H. Shirazi, Using homotopy analysis method to determine profile for disk cam by means of optimization of dissipated energy, International Review of Mechanical Engineering, 5 (2011), 941-946. 

[37]

D. ShenX. ShiH. ZhangX. Duan and G. Jiang, Experimental study of early-age bond behavior between high strength concrete and steel bars using a pull-out test, Construction and Building Materials, 113 (2016), 653-663.  doi: 10.1016/j.conbuildmat.2016.03.094.

[38]

J. SongW. WangS. SuX. DingQ. Luo and C. Quan, Experimental study on the bond-slip performance between concrete and a corrugated steel plate with studs, Engineering Structures, 224 (2020), 111195.  doi: 10.1016/j.engstruct.2020.111195.

[39]

J. SunJ. XiaoZ. Li and X. Feng, Experimental study on the thermal performance of a 3d printed concrete prototype building, Energy and Buildings, 241 (2021), 110965.  doi: 10.1016/j.enbuild.2021.110965.

[40]

X. SunC. Gao and H. Wang, Bond performance between BFRP bars and 3D printed concrete, Construction and Building Materials, 269 (2021), 121325.  doi: 10.1016/j.conbuildmat.2020.121325.

[41]

S. TrohaŽ. VrcanD. Karaivanov and M. Isametova, The selection of optimal reversible two-speed planetary gear trains for machine tool gearboxes, Facta Universitatis, Series: Mechanical Engineering, 18 (2020), 121-134. 

[42]

H. WangJ. ChenX. Sun and C. Gao, Bonding performance between steel wire rope and 3d printed cement-based composites, Journal of Building Structures (in Chinese), 42 (2021), 1-7.  doi: 10.14006/j.jzjgxb.2019.0410.

[43]

K.-L. Wang, Effect of fangzhu's nanoscale surface morphology on water collection, Mathematical Methods in the Applied Sciences, 2020. doi: 10.1002/mma.6569.

[44]

L. WuW. YangY. SunQ. Kang and Z. Wan, Experimental study on the influencing factors of the adhesive property between printed concrete and rebar, Industrial Construction (in Chinese), 262 (2020), 32-38.  doi: 10.13204/j.gyjzG20011603.

[45]

W. Xu, G. Wu et al., Experimental study on the bond behavior between sand spraying frp bars and concrete, Industrial Construction (in Chinese), (2009), 118–121.

[46]

C. Yang and S. Qi, Experimental study on the bond performance between bfrp bars and coral concrete, Engineering Mechanics (in Chinese), 35.

[47]

Q. YuanZ. LiD. ZhouT. HuangH. HuangD. Jiao and C. Shi, A feasible method for measuring the buildability of fresh 3d printing mortar, Construction and Building Materials, 227 (2019), 116600.  doi: 10.1016/j.conbuildmat.2019.07.326.

[48]

Z. ZhengM. Zhang and Z. Liu, Investigation on evaluating the printable height and dimensional stability of food extrusion-based 3d printed foods, Journal of Food Engineering, 306 (2021), 110636.  doi: 10.1016/j.jfoodeng.2021.110636.

[49]

Y.-T. Zuo and H.-J. Liu, Fractal approach to mechanical and electrical properties of graphene/sic composites, Facta Universitatis, Series: Mechanical Engineering, 19 (2021), 271-284.  doi: 10.22190/FUME201212003Z.

Figure 1.  Sketch of test specimen (unit: mm)
Figure 2.  Cubic specimen
Figure 3.  Test loading device
Figure 4.  Damaged shape of specimen (The main damage of the specimen is the split failure, and the pull-out failure mainly occurred in the specimens with the 45 printing direction) (a) Herringbone splitting (b) In-line splitting (c) Pull out
Figure 5.  Bond stress-slip relationship
Figure 6.  Printing direction
Figure 7.  Nonlinear bond stress-slip relationship [21]
Table 1.  Main chemical components of cementitious materials wt. %
Component Na$ _{2} $O MgO Al$ _{2} $O$ _{3} $ SiO$ _{2} $ P$ _{2} $O$ _{5} $ SO$ _{3} $ Cl K$ _{2} $O FeO$ _{3} $ TiO$ _{2} $ SrO
Cement 0.08 0.65 4.65 20.9 0.12 2.65 0.05 0.87 65.00 3.23 0.22
Component Na$ _{2} $O MgO Al$ _{2} $O$ _{3} $ SiO$ _{2} $ P$ _{2} $O$ _{5} $ SO$ _{3} $ Cl K$ _{2} $O FeO$ _{3} $ TiO$ _{2} $ SrO
Cement 0.08 0.65 4.65 20.9 0.12 2.65 0.05 0.87 65.00 3.23 0.22
Table 2.  Mix ratio of 3D printed concrete (wt. %)
Water-cement ratio cement Early Strength Agent Sand Fly ash Silica Fume Cellulase PVA Water reducing agent
0.3 26.6% 2.66% 66.46% 2.68% 1.34% 0.027% 0.0225% 0.186%
Water-cement ratio cement Early Strength Agent Sand Fly ash Silica Fume Cellulase PVA Water reducing agent
0.3 26.6% 2.66% 66.46% 2.68% 1.34% 0.027% 0.0225% 0.186%
Table 3.  Mechanical properties of the casted and printed concretes
Samples Compressive strength
Casted concrete 50.2 MPa
Printed concrete X-direction 37.7 MPa
Y-direction 42.9 MPa
Z-direction 40.0 MPa
Samples Compressive strength
Casted concrete 50.2 MPa
Printed concrete X-direction 37.7 MPa
Y-direction 42.9 MPa
Z-direction 40.0 MPa
Table 4.  Mechanical properties of steel bars
Rebar typeDiameter (mm) Yield Strength (MPa) Ultimate strength (MPa) Strain Elastic Modulus (MPa)
HRB400 10 330 400 14% 2.00$\times$10$^{5}$
Rebar typeDiameter (mm) Yield Strength (MPa) Ultimate strength (MPa) Strain Elastic Modulus (MPa)
HRB400 10 330 400 14% 2.00$\times$10$^{5}$
Table 5.  Pull-out test results of 3D printed concrete
Samples Rebar type $\tau_\text{max}$ (MPa) $s_\text{max}$ (mm) $\tau_\text{max}s_\text{max}$ (MPa$^{*}$mm) Average (MPa$^{*}$mm)
Our group Casted sample HRB400 10.13 0.933 9.4512 9.4512
Parallelly printed samples 8.75 0.93 8.1375 8.1375
Vertically printed samples 8.22 0.99 8.1378 8.1378
Inclined printed samples with 45° 6.15 0.80 4.92 4.92
Ref. [40] Casted samples BFRP Unsmooth bar 26.57 0.54 14.3478 16.7413
28.17 0.59 16.6203
28.74 0.67 19.2558
BFRP Smooth bar 23.94 1.35 19.36953 22.86019
25.71 1.42 23.60083
24.82 1.33 25.61021
Parallelly printed samples BFRP Unsmooth bar 22.81 0.49 11.1769 12.37963
24.27 0.56 13.5912
23.79 0.52 12.3708
BFRP Smooth bar 21.35 1.29 14.4182 16.80665
22.79 1.32 17.94038
21.42 1.46 18.06137
Vertically printed samples BFRP Unsmooth bar 20.48 0.52 10.6496 10.47707
20.65 0.48 9.912
19.41 0.56 10.8696
BFRP Smooth bar 13.51 1.01 10.7561 12.68027
18.84 1.36 13.48032
18.91 1.27 13.80439
Inclined printed samples with 45° BFRP Unsmooth bar 23.59 0.58 13.6822 12.42147
22.58 0.49 11.0642
22.76 0.55 12.518
BFRP Smooth bar 15.46 1.37 18.74461 16.44966
20.07 1.25 13.83025
21.94 1.34 16.77412
Samples Rebar type $\tau_\text{max}$ (MPa) $s_\text{max}$ (mm) $\tau_\text{max}s_\text{max}$ (MPa$^{*}$mm) Average (MPa$^{*}$mm)
Our group Casted sample HRB400 10.13 0.933 9.4512 9.4512
Parallelly printed samples 8.75 0.93 8.1375 8.1375
Vertically printed samples 8.22 0.99 8.1378 8.1378
Inclined printed samples with 45° 6.15 0.80 4.92 4.92
Ref. [40] Casted samples BFRP Unsmooth bar 26.57 0.54 14.3478 16.7413
28.17 0.59 16.6203
28.74 0.67 19.2558
BFRP Smooth bar 23.94 1.35 19.36953 22.86019
25.71 1.42 23.60083
24.82 1.33 25.61021
Parallelly printed samples BFRP Unsmooth bar 22.81 0.49 11.1769 12.37963
24.27 0.56 13.5912
23.79 0.52 12.3708
BFRP Smooth bar 21.35 1.29 14.4182 16.80665
22.79 1.32 17.94038
21.42 1.46 18.06137
Vertically printed samples BFRP Unsmooth bar 20.48 0.52 10.6496 10.47707
20.65 0.48 9.912
19.41 0.56 10.8696
BFRP Smooth bar 13.51 1.01 10.7561 12.68027
18.84 1.36 13.48032
18.91 1.27 13.80439
Inclined printed samples with 45° BFRP Unsmooth bar 23.59 0.58 13.6822 12.42147
22.58 0.49 11.0642
22.76 0.55 12.518
BFRP Smooth bar 15.46 1.37 18.74461 16.44966
20.07 1.25 13.83025
21.94 1.34 16.77412
Table 6.  Effects of bars property and concretes property on the bond stress-slip relationship
Samples D mm $\tau_\text{max}$ MPa $s_\text{max}$ mm $\tau_\text{max}s_\text{max}$ MPa.mm L mm DL mm$^{2}$ $\tau_\text{concrete}$ MPa $\tau_\text{max}s_\text{max}$/ ($\tau_\text{concrete} L$)
Casted 10.0 10.13 0.93 9.4512 60 600 50.2 0.003137848
Parallelly 8.75 0.93 8.1375 42.9 0.003161421
Vertically 8.22 0.99 8.1378 37.7 0.003597612
Ref.[45] 9.6 15.88 2.23 35.4124 48 461 37.7 0.019569187
10.4 18.56 1.68 31.1808 54 557 0.015444947
Ref.[46] 8.0 19.49 1.50 29.2350 40 320 36.3 0.020139846
12.0 17.75 3.14 55.7350 60 720 0.025597042
8.0 21.09 1.77 37.3293 20 160 0.051431937
12.0 20.27 2.30 46.6210 30 360 0.042822632
Ref.[28] 16.0 16.42 3.72 61.0517 80 1280 35.0 0.021804189
16.0 18.06 2.15 38.7929 80 1280 35.0 0.013854600
16.0 11.11 3.47 38.5517 80 1280 42.5 0.011338735
16.0 14.81 4.92 72.8652 80 1280 55.5 0.016411081
16.0 17.36 2.67 46.3512 80 1280 60.9 0.009513793
Ref.[13] 12.0 16.48 1.08 17.7984 60 720 30.0 0.009888000
12.0 20.43 1.50 30.6450 60 720 0.017025000
8.0 19.03 0.32 6.08960 40 320 0.005074667
Ref.[29] 10.0 20.00 0.91 18.2000 7.8 78.3 30 0.077479779
8.0 50.00 1.12 56.0000 19.5 156 20 0.143589744
12.0 90.00 1.90 171.000 16.45 197.4 40 0.259878419
Ref.[26] 10.0 13.52 3.20 43.2640 50 500 35.3 0.024512181
10.0 16.33 2.72 44.4176 100 1000 0.012582890
10.0 14.58 0.65 9.47700 150 1500 0.001789802
Samples D mm $\tau_\text{max}$ MPa $s_\text{max}$ mm $\tau_\text{max}s_\text{max}$ MPa.mm L mm DL mm$^{2}$ $\tau_\text{concrete}$ MPa $\tau_\text{max}s_\text{max}$/ ($\tau_\text{concrete} L$)
Casted 10.0 10.13 0.93 9.4512 60 600 50.2 0.003137848
Parallelly 8.75 0.93 8.1375 42.9 0.003161421
Vertically 8.22 0.99 8.1378 37.7 0.003597612
Ref.[45] 9.6 15.88 2.23 35.4124 48 461 37.7 0.019569187
10.4 18.56 1.68 31.1808 54 557 0.015444947
Ref.[46] 8.0 19.49 1.50 29.2350 40 320 36.3 0.020139846
12.0 17.75 3.14 55.7350 60 720 0.025597042
8.0 21.09 1.77 37.3293 20 160 0.051431937
12.0 20.27 2.30 46.6210 30 360 0.042822632
Ref.[28] 16.0 16.42 3.72 61.0517 80 1280 35.0 0.021804189
16.0 18.06 2.15 38.7929 80 1280 35.0 0.013854600
16.0 11.11 3.47 38.5517 80 1280 42.5 0.011338735
16.0 14.81 4.92 72.8652 80 1280 55.5 0.016411081
16.0 17.36 2.67 46.3512 80 1280 60.9 0.009513793
Ref.[13] 12.0 16.48 1.08 17.7984 60 720 30.0 0.009888000
12.0 20.43 1.50 30.6450 60 720 0.017025000
8.0 19.03 0.32 6.08960 40 320 0.005074667
Ref.[29] 10.0 20.00 0.91 18.2000 7.8 78.3 30 0.077479779
8.0 50.00 1.12 56.0000 19.5 156 20 0.143589744
12.0 90.00 1.90 171.000 16.45 197.4 40 0.259878419
Ref.[26] 10.0 13.52 3.20 43.2640 50 500 35.3 0.024512181
10.0 16.33 2.72 44.4176 100 1000 0.012582890
10.0 14.58 0.65 9.47700 150 1500 0.001789802
[1]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial and Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[2]

Claude Bardos, E. S. Titi. Loss of smoothness and energy conserving rough weak solutions for the $3d$ Euler equations. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 185-197. doi: 10.3934/dcdss.2010.3.185

[3]

Aseel Farhat, M. S Jolly, Evelyn Lunasin. Bounds on energy and enstrophy for the 3D Navier-Stokes-$\alpha$ and Leray-$\alpha$ models. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2127-2140. doi: 10.3934/cpaa.2014.13.2127

[4]

Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075

[5]

Mohamad Darwich. Local and global well-posedness in the energy space for the dissipative Zakharov-Kuznetsov equation in 3D. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3715-3724. doi: 10.3934/dcdsb.2020087

[6]

Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1001-1027. doi: 10.3934/dcdsb.2021078

[7]

Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093

[8]

Yong Zhou. Remarks on regularities for the 3D MHD equations. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 881-886. doi: 10.3934/dcds.2005.12.881

[9]

Hyeong-Ohk Bae, Bum Ja Jin. Estimates of the wake for the 3D Oseen equations. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 1-18. doi: 10.3934/dcdsb.2008.10.1

[10]

Indranil SenGupta, Weisheng Jiang, Bo Sun, Maria Christina Mariani. Superradiance problem in a 3D annular domain. Conference Publications, 2011, 2011 (Special) : 1309-1318. doi: 10.3934/proc.2011.2011.1309

[11]

Giovanny Guerrero, José Antonio Langa, Antonio Suárez. Biodiversity and vulnerability in a 3D mutualistic system. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4107-4126. doi: 10.3934/dcds.2014.34.4107

[12]

Jiao He, Rafael Granero-Belinchón. On the dynamics of 3D electrified falling films. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4041-4064. doi: 10.3934/dcds.2021027

[13]

Sadek Gala. A new regularity criterion for the 3D MHD equations in $R^3$. Communications on Pure and Applied Analysis, 2012, 11 (3) : 973-980. doi: 10.3934/cpaa.2012.11.973

[14]

Vladislav Balashov, Alexander Zlotnik. An energy dissipative semi-discrete finite-difference method on staggered meshes for the 3D compressible isothermal Navier–Stokes–Cahn–Hilliard equations. Journal of Computational Dynamics, 2020, 7 (2) : 291-312. doi: 10.3934/jcd.2020012

[15]

Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 543-556. doi: 10.3934/dcds.2004.10.543

[16]

Gabriel Deugoue. Approximation of the trajectory attractor of the 3D MHD System. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2119-2144. doi: 10.3934/cpaa.2013.12.2119

[17]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[18]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[19]

Alp Eden, Varga K. Kalantarov. 3D convective Cahn--Hilliard equation. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1075-1086. doi: 10.3934/cpaa.2007.6.1075

[20]

Franco Flandoli, Dejun Luo. Euler-Lagrangian approach to 3D stochastic Euler equations. Journal of Geometric Mechanics, 2019, 11 (2) : 153-165. doi: 10.3934/jgm.2019008

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (307)
  • HTML views (268)
  • Cited by (0)

[Back to Top]