doi: 10.3934/dcdss.2021162
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

An algorithm for solving linear nonhomogeneous quaternion-valued differential equations and some open problems

1. 

College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China

2. 

School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China

3. 

Department of Mathematics, Faculty of Science and Technology, University of Macau, Macau 999078, China

*Corresponding author: Yonghui Xia

Received  August 2021 Revised  October 2021 Early access December 2021

Quaternion-valued differential equations (QDEs) is a new kind of differential equations. In this paper, an algorithm was presented for solving linear nonhomogeneous quaternionic-valued differential equations. The variation of constants formula was established for the nonhomogeneous quaternionic-valued differential equations. Moreover, several examples showed the feasibility of our algorithm. Finally, some open problems end this paper.

Citation: Yonghui Xia, Hai Huang, Kit Ian Kou. An algorithm for solving linear nonhomogeneous quaternion-valued differential equations and some open problems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021162
References:
[1] S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, Oxford University Press, New York, 1995.   Google Scholar
[2]

S. L. Adler, Quaternionic quantum field theory, Commun. Math. Phys., 104 (1986), 611-656.  doi: 10.1007/BF01211069.  Google Scholar

[3]

J. J. Buckley and T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy Sets and Systems, 105 (1999), 241-248.  doi: 10.1016/S0165-0114(98)00323-6.  Google Scholar

[4]

J. Campos and J. Mawhin, Periodic solutions of quaternionic-values ordinary differential equations, Ann. Mat. Pura Appl., 185 (2006), S109–S127. doi: 10.1007/s10231-004-0139-z.  Google Scholar

[5]

D. Chen, M. Feckan and J. Wang, On the stability of linear quaternion-valued differential equations, Qual. Theor. Dyn. Syst., 2021. Google Scholar

[6]

L. Chen, Definition of determinant and Cramer solution over the quaternion field, Acta Math. Sinica (N.S.), 7 (1991), 171-180.  doi: 10.1007/BF02633946.  Google Scholar

[7]

L. Chen, Inverse matrix and properties of double determinant over quaternion field, Sci. China Ser. A, 34 (1991), 528-540.   Google Scholar

[8]

D. ChengK. Kou and Y. Xia, Floquet theory for quaternion-valued differential equations, Qual. Theor. Dyn. Syst., 19 (2020), 1-23.  doi: 10.1007/s12346-020-00355-8.  Google Scholar

[9]
[10]

A. GasullJ. Llibre and X. Zhang, One dimensional quaternion homogeneous polynomial differential equations, J. Math. Phys., 50 (2009), 082705.  doi: 10.1063/1.3139115.  Google Scholar

[11]

J. D. Gibbon, A quaternionic structure in the three-dimensional Euler and ideal magnetohydrodynamics equation, Physica D, 166 (2002), 17-28.  doi: 10.1016/S0167-2789(02)00434-7.  Google Scholar

[12]

J. D. GibbonD. D. HolmR. M. Kerr and I. Roulstone, Quaternions and particle dynamics in the Euler fluid equations, Nonlinearity, 19 (2006), 1969-1983.  doi: 10.1088/0951-7715/19/8/011.  Google Scholar

[13]

K. KouW. Liu and Y. Xia, Solve the linear quaternion-valued differential equations having multiple eigenvalues, J. Math. Phys., 60 (2019), 023510.   Google Scholar

[14]

K. KouY. Lou and Y. Xia, Zeros of a class of transcendental equation with application to bifurcation of DDE, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650062.  doi: 10.1142/S0218127416500620.  Google Scholar

[15]

K. Kou and Y. Xia, Linear quaternion differential equations: Basic theory and fundamental results, Stud. Appl. Math., 141 (2018), 3-45.  doi: 10.1111/sapm.12211.  Google Scholar

[16]

S. Leo and G. Ducati, Delay time in quaternionic quantum mechanics, J. Math. Phys., 53 (2012), 022102.  doi: 10.1063/1.3684747.  Google Scholar

[17]

S. Leo and G. Ducati, Solving simple quaternionic differential equations, J. Math. Phys., 44 (2003), 2224-2233.  doi: 10.1063/1.1563735.  Google Scholar

[18]

S. LeoG. Ducati and C. Nishi, Quaternionic potentials in non-relativistic quantum mechanics, J. Phys. A., 35 (2002), 5411-5426.  doi: 10.1088/0305-4470/35/26/305.  Google Scholar

[19] J. Li, Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.   Google Scholar
[20]

X. LiJ. Shen and R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Computat., 329 (2018), 14-22.  doi: 10.1016/j.amc.2018.01.036.  Google Scholar

[21]

Z. Li and C. Wang, Cauchy matrix and Liouville formula of quaternion impulsive dynamic equations on time scales, Open Math., 18 (2020), 353-377.  doi: 10.1515/math-2020-0021.  Google Scholar

[22]

Z. LiC. WangR. P. Agarwal and D. O'Regan, Commutativity of quaternion-matrix-valued functions and quaternion matrix dynamic equations on time scales, Stud Appl Math., 146 (2021), 139-210.  doi: 10.1111/sapm.12344.  Google Scholar

[23]

Y. LiuY. ZhengJ. LuJ. Cao and L. Rutkowski, Constrained quaternion-variable convex optimization: A quaternion-valued recurrent neural network approach, IEEE Trans. Neu. Netw. Learning syst., 31 (2020), 1022-1035.  doi: 10.1109/TNNLS.2019.2916597.  Google Scholar

[24]

J. Marins, X. Yun, E. Bachmann, R. McGhee and M. Zyda, An extended Kalman filter for quaternion-based orientation estimation using MARG sensors, IEEE/RSJ International Conference on Intelligent Robots and Systems Maui, 2001. doi: 10.1109/IROS.2001.976367.  Google Scholar

[25]

D. PengX. LiR. Rakkiyappan and Y. Ding, Stabilization of stochastic delayed systems: Event-triggered impulsive control, Appl. Math. Comput., 401 (2021), 126054.  doi: 10.1016/j.amc.2021.126054.  Google Scholar

[26]

V. N. Roubtsov and I. Roulstone, Holomorphic structures in hydrodynamical models of nearly geostrophic flow, Proc. R. Soc. London. Ser. A., 457 (2001), 1519-1531.  doi: 10.1098/rspa.2001.0779.  Google Scholar

[27]

V. N. Rubtsov and I. Roulstone, Examples of quaternionic and Keller structures in Hamiltonian models of nearly geostrophic flow, J. Phys. A., 30 (1997), 3739.   Google Scholar

[28]

Y. Song and X. Tang, Stability, steady-state bifurcations and Turing patterns in a predator-prey model with herd behavior and prey-taxis, Stud. Appl. Math., 139 (2017), 371-404.  doi: 10.1111/sapm.12165.  Google Scholar

[29]

Y. Song and J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl., 301 (2005), 1-21.  doi: 10.1016/j.jmaa.2004.06.056.  Google Scholar

[30]

L. SuoM. Feckan and J. Wang, Quaternion-valued linear impulsive differential equations, Qual. Theor. Dyn. Syst., 20 (2021), 33.  doi: 10.1007/s12346-021-00467-9.  Google Scholar

[31]

F. Udwadia and A. Schttle, An alternative derivation of the quaternion equations of motion for rigid-body rotational dynamics, J. Appl. Mech., 77 (2010), 044505.  doi: 10.1115/1.4000917.  Google Scholar

[32]

J. R. Wertz, Spacecraft Attitude Determination and Control, Kluwer Academic Publishers, The Netherlands, 1978. Google Scholar

[33]

P. Wilczynski, Quaternionic-valued ordinary differential equations. The Riccati equation, J. Differential Equations, 247 (2009), 2163-2187.  doi: 10.1016/j.jde.2009.06.015.  Google Scholar

[34]

P. Wilczynski, Quaternionic-valued ordinary differential equations II. Coinciding sectors, J. Differential Equations, 252 (2012), 4503-4528.  doi: 10.1016/j.jde.2012.01.005.  Google Scholar

[35] Y. XiaK. Kou and and Y. Liu, Theoy and Applications of Quaternion-Valued Differential Equations, Science Press, Beijing, 2021.   Google Scholar
[36]

B. ZhangW. ZhuY. Xia and Y. Bai, A unified analysis of exact traveling wave solutions for the fractional-order and integer-order Biswas-Milovic equation: Via bifurcation theory of dynamical system, Qual. Theor. Dyn. Syst., 19 (2020), 11.  doi: 10.1007/s12346-020-00352-x.  Google Scholar

[37]

X. Zhang, Global structure of quaternion polynomial differential equations, Commun. Math. Phys., 303 (2011), 301-316.  doi: 10.1007/s00220-011-1196-y.  Google Scholar

[38]

Y. Zhang and Y. Xia, Traveling wave solutions of generalized Dullin-Gottwald-Holm equation with parabolic law nonlinearity, Qual. Theor. Dyn. Syst., 20 (2021), 67.  doi: 10.1007/s12346-021-00503-8.  Google Scholar

[39]

Y. ZhaoX. Li and J. Cao, Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency, Appl. Math. Comput., 386 (2020), 125467.  doi: 10.1016/j.amc.2020.125467.  Google Scholar

[40]

J. Zhu and J. Sun, Existence and uniqueness results for quaternion-valued nonlinear impulsive differential systems, J. Syst. Sci. Complex., 31 (2018), 596-607.  doi: 10.1007/s11424-017-6158-9.  Google Scholar

[41]

W. ZhuY. XiaB. Zhang and Y. Bai, Exact traveling wave solutions and bifurcations of the time fractional differential equations with applications, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950041.  doi: 10.1142/S021812741950041X.  Google Scholar

show all references

References:
[1] S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, Oxford University Press, New York, 1995.   Google Scholar
[2]

S. L. Adler, Quaternionic quantum field theory, Commun. Math. Phys., 104 (1986), 611-656.  doi: 10.1007/BF01211069.  Google Scholar

[3]

J. J. Buckley and T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy Sets and Systems, 105 (1999), 241-248.  doi: 10.1016/S0165-0114(98)00323-6.  Google Scholar

[4]

J. Campos and J. Mawhin, Periodic solutions of quaternionic-values ordinary differential equations, Ann. Mat. Pura Appl., 185 (2006), S109–S127. doi: 10.1007/s10231-004-0139-z.  Google Scholar

[5]

D. Chen, M. Feckan and J. Wang, On the stability of linear quaternion-valued differential equations, Qual. Theor. Dyn. Syst., 2021. Google Scholar

[6]

L. Chen, Definition of determinant and Cramer solution over the quaternion field, Acta Math. Sinica (N.S.), 7 (1991), 171-180.  doi: 10.1007/BF02633946.  Google Scholar

[7]

L. Chen, Inverse matrix and properties of double determinant over quaternion field, Sci. China Ser. A, 34 (1991), 528-540.   Google Scholar

[8]

D. ChengK. Kou and Y. Xia, Floquet theory for quaternion-valued differential equations, Qual. Theor. Dyn. Syst., 19 (2020), 1-23.  doi: 10.1007/s12346-020-00355-8.  Google Scholar

[9]
[10]

A. GasullJ. Llibre and X. Zhang, One dimensional quaternion homogeneous polynomial differential equations, J. Math. Phys., 50 (2009), 082705.  doi: 10.1063/1.3139115.  Google Scholar

[11]

J. D. Gibbon, A quaternionic structure in the three-dimensional Euler and ideal magnetohydrodynamics equation, Physica D, 166 (2002), 17-28.  doi: 10.1016/S0167-2789(02)00434-7.  Google Scholar

[12]

J. D. GibbonD. D. HolmR. M. Kerr and I. Roulstone, Quaternions and particle dynamics in the Euler fluid equations, Nonlinearity, 19 (2006), 1969-1983.  doi: 10.1088/0951-7715/19/8/011.  Google Scholar

[13]

K. KouW. Liu and Y. Xia, Solve the linear quaternion-valued differential equations having multiple eigenvalues, J. Math. Phys., 60 (2019), 023510.   Google Scholar

[14]

K. KouY. Lou and Y. Xia, Zeros of a class of transcendental equation with application to bifurcation of DDE, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650062.  doi: 10.1142/S0218127416500620.  Google Scholar

[15]

K. Kou and Y. Xia, Linear quaternion differential equations: Basic theory and fundamental results, Stud. Appl. Math., 141 (2018), 3-45.  doi: 10.1111/sapm.12211.  Google Scholar

[16]

S. Leo and G. Ducati, Delay time in quaternionic quantum mechanics, J. Math. Phys., 53 (2012), 022102.  doi: 10.1063/1.3684747.  Google Scholar

[17]

S. Leo and G. Ducati, Solving simple quaternionic differential equations, J. Math. Phys., 44 (2003), 2224-2233.  doi: 10.1063/1.1563735.  Google Scholar

[18]

S. LeoG. Ducati and C. Nishi, Quaternionic potentials in non-relativistic quantum mechanics, J. Phys. A., 35 (2002), 5411-5426.  doi: 10.1088/0305-4470/35/26/305.  Google Scholar

[19] J. Li, Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013.   Google Scholar
[20]

X. LiJ. Shen and R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Computat., 329 (2018), 14-22.  doi: 10.1016/j.amc.2018.01.036.  Google Scholar

[21]

Z. Li and C. Wang, Cauchy matrix and Liouville formula of quaternion impulsive dynamic equations on time scales, Open Math., 18 (2020), 353-377.  doi: 10.1515/math-2020-0021.  Google Scholar

[22]

Z. LiC. WangR. P. Agarwal and D. O'Regan, Commutativity of quaternion-matrix-valued functions and quaternion matrix dynamic equations on time scales, Stud Appl Math., 146 (2021), 139-210.  doi: 10.1111/sapm.12344.  Google Scholar

[23]

Y. LiuY. ZhengJ. LuJ. Cao and L. Rutkowski, Constrained quaternion-variable convex optimization: A quaternion-valued recurrent neural network approach, IEEE Trans. Neu. Netw. Learning syst., 31 (2020), 1022-1035.  doi: 10.1109/TNNLS.2019.2916597.  Google Scholar

[24]

J. Marins, X. Yun, E. Bachmann, R. McGhee and M. Zyda, An extended Kalman filter for quaternion-based orientation estimation using MARG sensors, IEEE/RSJ International Conference on Intelligent Robots and Systems Maui, 2001. doi: 10.1109/IROS.2001.976367.  Google Scholar

[25]

D. PengX. LiR. Rakkiyappan and Y. Ding, Stabilization of stochastic delayed systems: Event-triggered impulsive control, Appl. Math. Comput., 401 (2021), 126054.  doi: 10.1016/j.amc.2021.126054.  Google Scholar

[26]

V. N. Roubtsov and I. Roulstone, Holomorphic structures in hydrodynamical models of nearly geostrophic flow, Proc. R. Soc. London. Ser. A., 457 (2001), 1519-1531.  doi: 10.1098/rspa.2001.0779.  Google Scholar

[27]

V. N. Rubtsov and I. Roulstone, Examples of quaternionic and Keller structures in Hamiltonian models of nearly geostrophic flow, J. Phys. A., 30 (1997), 3739.   Google Scholar

[28]

Y. Song and X. Tang, Stability, steady-state bifurcations and Turing patterns in a predator-prey model with herd behavior and prey-taxis, Stud. Appl. Math., 139 (2017), 371-404.  doi: 10.1111/sapm.12165.  Google Scholar

[29]

Y. Song and J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl., 301 (2005), 1-21.  doi: 10.1016/j.jmaa.2004.06.056.  Google Scholar

[30]

L. SuoM. Feckan and J. Wang, Quaternion-valued linear impulsive differential equations, Qual. Theor. Dyn. Syst., 20 (2021), 33.  doi: 10.1007/s12346-021-00467-9.  Google Scholar

[31]

F. Udwadia and A. Schttle, An alternative derivation of the quaternion equations of motion for rigid-body rotational dynamics, J. Appl. Mech., 77 (2010), 044505.  doi: 10.1115/1.4000917.  Google Scholar

[32]

J. R. Wertz, Spacecraft Attitude Determination and Control, Kluwer Academic Publishers, The Netherlands, 1978. Google Scholar

[33]

P. Wilczynski, Quaternionic-valued ordinary differential equations. The Riccati equation, J. Differential Equations, 247 (2009), 2163-2187.  doi: 10.1016/j.jde.2009.06.015.  Google Scholar

[34]

P. Wilczynski, Quaternionic-valued ordinary differential equations II. Coinciding sectors, J. Differential Equations, 252 (2012), 4503-4528.  doi: 10.1016/j.jde.2012.01.005.  Google Scholar

[35] Y. XiaK. Kou and and Y. Liu, Theoy and Applications of Quaternion-Valued Differential Equations, Science Press, Beijing, 2021.   Google Scholar
[36]

B. ZhangW. ZhuY. Xia and Y. Bai, A unified analysis of exact traveling wave solutions for the fractional-order and integer-order Biswas-Milovic equation: Via bifurcation theory of dynamical system, Qual. Theor. Dyn. Syst., 19 (2020), 11.  doi: 10.1007/s12346-020-00352-x.  Google Scholar

[37]

X. Zhang, Global structure of quaternion polynomial differential equations, Commun. Math. Phys., 303 (2011), 301-316.  doi: 10.1007/s00220-011-1196-y.  Google Scholar

[38]

Y. Zhang and Y. Xia, Traveling wave solutions of generalized Dullin-Gottwald-Holm equation with parabolic law nonlinearity, Qual. Theor. Dyn. Syst., 20 (2021), 67.  doi: 10.1007/s12346-021-00503-8.  Google Scholar

[39]

Y. ZhaoX. Li and J. Cao, Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency, Appl. Math. Comput., 386 (2020), 125467.  doi: 10.1016/j.amc.2020.125467.  Google Scholar

[40]

J. Zhu and J. Sun, Existence and uniqueness results for quaternion-valued nonlinear impulsive differential systems, J. Syst. Sci. Complex., 31 (2018), 596-607.  doi: 10.1007/s11424-017-6158-9.  Google Scholar

[41]

W. ZhuY. XiaB. Zhang and Y. Bai, Exact traveling wave solutions and bifurcations of the time fractional differential equations with applications, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1950041.  doi: 10.1142/S021812741950041X.  Google Scholar

[1]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055

[2]

Hüseyin Bereketoğlu, Mihály Pituk. Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays. Conference Publications, 2003, 2003 (Special) : 100-107. doi: 10.3934/proc.2003.2003.100

[3]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[4]

Fei Chen, Yongsheng Li, Huan Xu. Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 2945-2967. doi: 10.3934/dcds.2016.36.2945

[5]

Xin Zhong. Global strong solution to the nonhomogeneous micropolar fluid equations with large initial data and vacuum. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021296

[6]

Nur Fadhilah Ibrahim. An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 75-91. doi: 10.3934/naco.2014.4.75

[7]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[8]

Fernando Casas, Cristina Chiralt. A Lie--Deprit perturbation algorithm for linear differential equations with periodic coefficients. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 959-975. doi: 10.3934/dcds.2014.34.959

[9]

Can Li, Weihua Deng, Lijing Zhao. Well-posedness and numerical algorithm for the tempered fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1989-2015. doi: 10.3934/dcdsb.2019026

[10]

Chao Wang, Zhien Li, Ravi P. Agarwal. Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales. Discrete & Continuous Dynamical Systems - S, 2022, 15 (2) : 359-386. doi: 10.3934/dcdss.2021041

[11]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021069

[12]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061

[13]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[14]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[15]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[16]

Huanting Li, Yunfei Peng, Kuilin Wu. The existence and properties of the solution of a class of nonlinear differential equations with switching at variable times. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021289

[17]

Arnold Dikansky. Fitzhugh-Nagumo equations in a nonhomogeneous medium. Conference Publications, 2005, 2005 (Special) : 216-224. doi: 10.3934/proc.2005.2005.216

[18]

Feng Bao, Yanzhao Cao, Weidong Zhao. A first order semi-discrete algorithm for backward doubly stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1297-1313. doi: 10.3934/dcdsb.2015.20.1297

[19]

Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014

[20]

A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (61)
  • HTML views (54)
  • Cited by (0)

Other articles
by authors

[Back to Top]