\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Identifying the heat sink

  • *Corresponding author: A. Boumenir

    *Corresponding author: A. Boumenir 

This work is supported by KFUPM grant SB191022

Abstract / Introduction Full Text(HTML) Figure(6) / Table(3) Related Papers Cited by
  • In this paper we examine the identification problem of the heat sink for a one dimensional heat equation through observations of the solution at the boundary or through a desired temperature profile to be attained at a certain given time. We make use of pseudo-spectral methods to recast the direct as well as the inverse problem in terms of linear systems in matrix form. The resulting evolution equations in finite dimensional spaces leads to fast real time algorithms which are crucial to applied control theory.

    Mathematics Subject Classification: 35R30, 65M32.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Plots of relative errors between the known heat sink q(x) and heat sink $ \tilde{q}(x) $ recovered with Algorithm 1

    Figure 2.  Plots of relative errors between the known heat sink q(x) and heat sink $ \tilde{q}(x) $ recovered with Algorithm 2

    Figure 3.  Plots of errors between the known heat sink q(x) and heat sink $ \tilde{q}(x) $ recovered with Algorithm 3

    Figure 4.  Matching of q(x) and the $ \tilde{q}(x) $ recovered at T = 0.001 with Algorithm 1

    Figure 5.  Matching of q(x) and the $ \tilde{q}(x) $ recovered at T = 1 with Algorithm 2

    Figure 6.  Matching of q(x) and the $ \tilde{q}(x) $ recovered at T = 1 with Algorithm 3

    Table 1.  Errors in the recovery of the Fourier coefficients using Algorithm 1

    $ T $ $ |\boldsymbol{q}_5 - \tilde{\boldsymbol{q}}_5| $ $ ||\boldsymbol{q}_5 - \tilde{\boldsymbol{q}}_5||_2 $
    0.0001 $ [1.56e-06, 3.15e-06, 3.20e-06,5.44e-08, 3.80e-07]^\top $ 4.77e-06
    0.001 $ [2.22e-08,\ 1.59e-05,\ 7.39e-06,\ 1.34e-05, \ 2.07e-05]^\top $ $ 3.03e-05 $
    0.01 $ [ 2.65e-04,\ 2.10e-03,\ 2.89e-04, 1.46e-03,\ 1.61e-03]^\top $ $ 3.05e-03 $
    0.1 $ [5.71e-02,\ 2.47e-03,\ 8.77e-02, 2.30e-03, \ 4.49e-02]^\top $ $ 1.14\text{e-01} $
     | Show Table
    DownLoad: CSV

    Table 2.  Errors in the recovery of the Fourier coefficients using Algorithm 2

    $ T $ $ |\boldsymbol{q}_5 - \tilde{\boldsymbol{q}}_5| $ $ ||\boldsymbol{q}_5 - \tilde{\boldsymbol{q}}_5||_2 $
    0.1 $ [6.01e-4,\ 8.21e-04,\ 6.34e-04, 4.71e-04, \ 2.61e-04]^\top $ $ 1.31e-03 $
    1 $ [2.91e-06,\ 9.58e-06,\ 4.64e-06,\ 2.06e-06,\ 6.03e-08]^\top $ $ 1.12e-05 $
    2 $ [ 4.93e-01,\ 2.49e-01, \ 1.39e-01,\ 4.95e-01,\ 2.46e-02]^\top $ $ 2.96e-01 $
    3 $ [ 7.1e-01,\ 1.02e-0,\ 5.88e-01,\ 2.06e-01,\ 9.62e-02]^\top $ $ 1.39e-0 $
    5 $ [3.99e-01,\ 7.48e-01, \ 4.98e-01,\ 1.99e-01,\ 9.97e-02]^\top $ $ 1.01e-0 $
    6 $ [5.12e-0, 7.5 e-01, 5e-01, 2e-01, 1e-01]^\top $ $ 5.20e-0 $
    7 $ [ 3.4e-01, 7.5e-01, 5e-01, 2e-01, 1e-01 ]^\top $ $ 34.87e-0 $
     | Show Table
    DownLoad: CSV

    Table 3.  Errors in the recovery of the Fourier coefficients using Algorithm 3

    $ T $ $ |\boldsymbol{q}_5 - \tilde{\boldsymbol{q}}_5| $ $ ||\boldsymbol{q}_5 - \tilde{\boldsymbol{q}}_5||_2 $
    0.1 $ [2.65e-06, 3.39e-06, 4.50e-07, 4.83e-07, 5.05e-07]^\top $ 4.38e-06
    1 $ [4.70e-10, 9.36e-10, 8.53e-10, 4.74e-10, 2.57e-10]^\top $ 1.46e-09
    5 $ [6.21e-10, 1.19e-09, 1.07e-09, 5.86e-10, 3.14e-10]^\top $ 1.84e-09
    10 $ [5.78e-10, 1.11e-09, 9.67e-10, 5.28e-10, 2.82e-10]^\top $ 1.69e-09
     | Show Table
    DownLoad: CSV
  • [1] K. Ammari and M. Choulli, Logarithmic stability in determining two coefficients in a dissipative wave equation. Extensions to clamped Euler-Bernoulli beam and heat equations, J. Differential Equations, 259 (2015), 3344-3365.  doi: 10.1016/j.jde.2015.04.023.
    [2] K. Ammari and  S. GerbiEvolution Equations: Long Time Behaviour and Control, London Mathematical Society Lecture Note Series, 439. Cambridge University Press, Cambridge, 2018. 
    [3] K. Atkinson and W. Han, Elementary Numerical Analysis, 3$^{rd}$ edition, Wiley, 2004.
    [4] M. Belishev, On approximating properties of solutions of the heat equation, Control Theory of Partial Differential Equations, Chapman and Hall/CRC, 242 (2005), 43–50.
    [5] A. Boumenir and V. Tuan, Recovery of heat coefficient by two measurements, Inverse Probl. Imaging, 5 (2011), 775-791.  doi: 10.3934/ipi.2011.5.775.
    [6] H. Fattorini and D. Russell, Uniform bounds on biothorgonal functions for real exponentials with an application to the control theory of parabolic equations, Quart. Appl. Math., 32 (1974), 45-69.  doi: 10.1090/qam/510972.
    [7] A. I. Prilepko and A. B. Kostin, On some inverse problems for parabolic equations with final and integral observation, Mat. Sb., 183 (1992), 49-68. 
    [8] A. I. Prilekpo, D. G. Orlovsky and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Monographs and Textbooks in Pure and Applied Mathematics, 231. Marcel Dekker, Inc., New York, 2000.
    [9] D. Russell, Controllability and stabilizability theory for linear partial differential equations: Some results and open questions, SIAM Rev, 20 (1978), 639-739.  doi: 10.1137/1020095.
    [10] E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems, Handbook of Differential Equations: Evolutionary Equations, C. M. Dafermos and E. Feireisl eds., Elsevier Science, 3 (2007), 527–621. doi: 10.1016/S1874-5717(07)80010-7.
  • 加载中

Figures(6)

Tables(3)

SHARE

Article Metrics

HTML views(1686) PDF downloads(233) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return