We consider a class of one-dimensional nonlinear stochastic parabolic problems associated to Sellers and Budyko diffusive energy balance climate models with a Legendre weighted diffusion and an additive cylindrical Wiener processes forcing. Our results use in an important way that, under suitable assumptions on the Wiener processes, a suitable change of variables leads the problem to a pathwise random PDE, hence an essentially "deterministic" formulation depending on a random parameter. Two applications are also given: the stability of solutions when the Wiener process converges to zero and the asymptotic behaviour of solutions for large time.
Citation: |
[1] |
D. Arcoya, J. I. Díaz and L. Tello, S-Shaped bifurcation branch in a quasilinear multivalued model arising in climatology, J. Differential Equations, 150 (1998), 215-225.
doi: 10.1006/jdeq.1998.3502.![]() ![]() ![]() |
[2] |
L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
[3] |
V. Barbu, Nonlinear Differential Equations of MonotoneType in Banach Spaces, SpringerMonographs in Mathematics. Springer, 2010.
doi: 10.1007/978-1-4419-5542-5.![]() ![]() ![]() |
[4] |
V. Barbu and M. Röckner, An operational approach to stochastic differential equations driven by linear multiplicative noise, J. Eur. Math. Soc., 17 (2015), 1789-1815.
doi: 10.4171/JEMS/545.![]() ![]() ![]() |
[5] |
P. Bénilan, M. G. Crandall and A. Pazy, Nonlinear Evolution Equations Governed by Accretive Operators, Manuscript of Book in Preparation.
![]() |
[6] |
S. Bensid and J. I. Díaz, On the exact number of monotone solutions of a simplified Budyko climate model and their different stability, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1033-1047.
doi: 10.3934/dcdsb.2019005.![]() ![]() ![]() |
[7] |
A. Bensoussan and R. Temam, ćquations aux derivées partielles stochastiques non lineaires, Israel J. Math., 11 (1972), 95-129.
doi: 10.1007/BF02761449.![]() ![]() ![]() |
[8] |
W. J. Beyn, B. Gess, P. Lescot and M. Röckner, The global random attractor for a class of stochastic porous media equations, Comm. Partial Differential Equations, 36 (2011), 446-469.
doi: 10.1080/03605302.2010.523919.![]() ![]() ![]() |
[9] |
H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.
![]() ![]() |
[10] |
Z. Brzezniak and J. van Neerven, Stochastic convolution is separable Bancah spaces and the stochastic lineal Cauchy problem, Studia Math., 143 (2000), 43-74.
doi: 10.4064/sm-143-1-43-74.![]() ![]() ![]() |
[11] |
R. Buckdahn and É. Pardoux, Monotonicity methods for white noise driven quasilinear SPDEs, Diffusion Processes and Related Problems in Analysis, I, M. Pinsky, ed., Birkhäuser Boston, MA, 22 (1990), 219–233.
![]() ![]() |
[12] |
M. I. Budyko, The effect of solar radiation variations on the climate of the Earth, Tellus, 21 (1969), 611-619.
![]() |
[13] |
T. Caraballo, J. A. Langa and J. Valero, Global attractors for multivalued random dynamical systems, Nonlinear Anal., 48 (2002), 805-829.
doi: 10.1016/S0362-546X(00)00216-9.![]() ![]() ![]() |
[14] |
T. Caraballo, J. A. Langa and J. Valero, On the relationship between solutions of stochastic and random differential inclusions, Stoch. Anal. Appl., 21 (2003), 545-557.
doi: 10.1081/SAP-120020425.![]() ![]() ![]() |
[15] |
A. N. Carvalho, J. A. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4581-4.![]() ![]() ![]() |
[16] |
P.-L. Chow, Stochastic Partial Differential Equation, CRC Press, Boca Raton, 2015.
![]() ![]() |
[17] |
H. Crauel and F. Flandolfi, Attractors for random dynamical systems, Prob. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705.![]() ![]() ![]() |
[18] |
G. Da Prato, Kolmogorov Equations for Stochastic PDEs, Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel, 2004.
doi: 10.1007/978-3-0348-7909-5.![]() ![]() ![]() |
[19] |
G. Da Prato and H. Frankowska, A stochastic Filippov theorem, Stochastic Anal. Appl., 12 (1994), 409-426.
doi: 10.1080/07362999408809361.![]() ![]() ![]() |
[20] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Presss, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() ![]() |
[21] |
G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Presss, 1996.
doi: 10.1017/CBO9780511662829.![]() ![]() ![]() |
[22] |
G. Díaz and J. I. Díaz, On a stochastic parabolic PDE arising in Climatology, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 96 (2002), 123-128.
![]() ![]() |
[23] |
J. I. Díaz, Mathematical analysis of some diffusive energy balance climate models, In Mathematics, Climate and Environment (J.I. Díaz and J.-L. Lions, eds.), Masson, Paris, 28–56, 1993.
![]() ![]() |
[24] |
J. I. Díaz, J. Hernández and L. Tello, On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology, J. Math. Anal. Appl., 216 (1997), 593-613.
doi: 10.1006/jmaa.1997.5691.![]() ![]() ![]() |
[25] |
J. I. Díaz and G. Hetzer, A functional quasilinear reaction-diffusion equation arising in climatology, In ćquations Aux Dérivées Partielles et Applications, Articles dédiés à J.-L. Lions, Gauthier-Villars, Elsevier, Paris (1998), 461–480.
![]() ![]() |
[26] |
J. I. Díaz, G. Hetzer and L. Tello, An energy balance climate model with hysteresis, Nonlinear Anal., 64 (2006), 2053-2074.
doi: 10.1016/j.na.2005.07.038.![]() ![]() ![]() |
[27] |
J. I. Díaz, J. A. Langa and J. Valero, On the asymptotic behaviour of solutions of a stochastic energy balance climate model, Phys. D, 238 (2009), 880-887.
doi: 10.1016/j.physd.2009.02.010.![]() ![]() ![]() |
[28] |
J. I. Díaz and L. Tello, On a nonlinear parabolic problem on a Riemannian manifold without boundary arising in climatology, Collect. Math., 50 (1999), 19-51.
![]() ![]() |
[29] |
J. I. Díaz and I. I. Vrabie, Existence for reaction-diffusion systems. A compactness method approach, J. Math. Anal. Appl., 188 (1994), 521-540.
doi: 10.1006/jmaa.1994.1443.![]() ![]() ![]() |
[30] |
H. Doss, Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst. H. Poincaré Sect. B (N. S.), 13 (1977), 99-125.
![]() ![]() |
[31] |
I. Gyöngy and E. Pardoux, On the regularization effecto to space-time white noise on quasi-linear stochastic partial differential equations, Probab. Theory Relat. Fields, 97 (1993), 211-229.
doi: 10.1007/BF01199321.![]() ![]() ![]() |
[32] |
X. Han and P. E. Kloeden, Stochastic Ordinary Differential Equations and Their Numerical Solutions, Springer Singapore, 2017.
doi: 10.1007/978-981-10-6265-0.![]() ![]() ![]() |
[33] |
X. Han and P. E. Kloeden, Sigmoidal approximations of Heaviside functions in neural lattice models, J. Differential Equations, 268 (2020), 5283-5300.
doi: 10.1016/j.jde.2019.11.010.![]() ![]() ![]() |
[34] |
X. Han and P. E. Kloeden, Corrigendum to "Sigmoidal approximations of Heaviside functions in neural lattice models", J. Differential Equations, 274 (2020), 1214-1220.
doi: 10.1016/j.jde.2020.11.017.![]() ![]() ![]() |
[35] |
G. Hetzer, The structure of the principal component for semilinear diffusion equations from energy balance climate models, Houston J. Math., 16 (1990), 203-216.
![]() ![]() |
[36] |
G. Hetzer, S-shapedness for energy balance climate models of Sellers-type, In The Mathematics of Models for Climatology and Environment (J. I. Díaz, ed.), Springer, Berlin, (1997), 253–287.
![]() ![]() |
[37] |
G. Hetzer, The number of stationary solntions for one-dimensional Budyko-type climate models, Nonlinear Anal. Real World Appl., 2 (2001), 259-272.
doi: 10.1016/S0362-546X(00)00103-6.![]() ![]() ![]() |
[38] |
G. Hetzer and P. Schmidt, Analysis of energy balance models, World Congress of Nonlinear Analysts '92, (1996), 1609–1618.
![]() ![]() |
[39] |
P. Imkeller, Energy balance models-viewed from stochastic dynamics, In Stochastic Climate Models (P. Imkeller and J.-S. von Storch, eds.), Birkhäuser, Basel, (2001), 213–240.
![]() ![]() |
[40] |
H. G. Kaper and H. Engler, Mathematics and Climate, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pennsylvania, 2013.
doi: 10.1137/1.9781611972610.![]() ![]() ![]() |
[41] |
A. V. Kapustyan, A random attractor of a stochastically perturbed evolution inclusion, Differ. Equ., 40 (2004), 1383-1388.
doi: 10.1007/s10625-005-0060-2.![]() ![]() ![]() |
[42] |
K. Liu, Stochastic Stability of Differential Equations in Abstract Spaces, Cambridge University Pres, 2019.
doi: 10.1017/9781108653039.![]() ![]() ![]() |
[43] |
W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Universitext. Springer, Cham, 2015.
doi: 10.1007/978-3-319-22354-4.![]() ![]() ![]() |
[44] |
V. Lucarini, L. Serdukova and G. Margazoglou, Lévy-noise versus Gaussian-noise-induced Transitions in the Ghil-Sellers Energy Balance Model, Nonlinear Processes in Geophysics, 2021.
doi: 10.5194/npg-2021-34.![]() ![]() |
[45] |
A. F. Nikiforov, S. K. Suslov and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer-Verlag, New York, 1991
doi: 10.1007/978-3-642-74748-9.![]() ![]() ![]() |
[46] |
G. R. North and R. F. Cahalan, Predictability in a solvable stochastic climate model, J. Atmospheric Science, 38 (1981), 504-513.
doi: 10.1175/1520-0469(1981)038<0504:PIASSC>2.0.CO;2.![]() ![]() |
[47] |
G. R. North and K. Y. Kim, Energy Balance Climate Models, Wiley-VCH, Weinheim, Germany, 2017.
![]() |
[48] |
B. Schmidt, Bifurcation of Stationary Solutions for Legendre-Type Boundary Value Problems Arising From Climate Modeling, Thesis (Ph.D.)–Auburn University, 1994.
![]() ![]() |
[49] |
W. S. Sellers, A global climatic model based on the energy balance of the earth-atmosphere system, J. Appl. Meteorol, 8 (1969), 392-400.
doi: 10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2.![]() ![]() |
[50] |
H. J. Sussmann, On the gap between deterministic and stochastic differential equations, Ann. Probability, 6 (1978), 19-41.
![]() ![]() |
[51] |
J. van Neerven and M. Veraar, Maximal inequalities for stochastic convolutions and pathwise uniform convergence of time discretisation schemes, Stoch PDE: Anal Comp, 2021.
doi: 10.1007/s40072-021-00204-y.![]() ![]() |
[52] |
I. I. Vrabie, Compactness Methods for Nonlinear Evolutions, 2$^{nd}$ edition, Pitman Monographs and Surveys in Pure and Applied Mathematics, New York, 1995.
![]() ![]() |
[53] |
S. Yotsutani, Evolution equations associated with the subdifferentials, J. Math. Soc. Japan, 31 (1979), 623-646.
doi: 10.2969/jmsj/03140623.![]() ![]() ![]() |
Values of the parameter