-
Previous Article
Attractors for the Navier-Stokes-Cahn-Hilliard system
- DCDS-S Home
- This Issue
-
Next Article
Two phase flows of compressible viscous fluids
An oxygen driven proliferative-to-invasive transition of glioma cells: An analytical study
Università di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Via Campi 213/B, I-41125 Modena, Italy |
Our aim in this paper is to analyze a model of glioma where oxygen drives cancer diffusion and proliferation. We prove the global well-posedness of the analytical problem and that, in the longtime, the illness does not disappear. Besides, the tumor dynamics increase the oxygen levels.
Addendum: "This research has been performed within the framework of the grant MIUR-PRIN 2020F3NCPX “Mathematics for industry 4.0 (Math4I4)”." is added under Fund Project. We apologize for any inconvenience this may cause.
References:
[1] |
A. Aubert and R. Costalat,
Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism, J. Cereb. Blood Flow Metab., 25 (2005), 1476-1490.
doi: 10.1038/sj.jcbfm.9600144. |
[2] |
A. Aubert, R. Costalat, P. Magistretti, J. Pierre and L. Pellerin,
Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation, Proc. National Acad. Sci. USA, 102 (2005), 16448-16453.
doi: 10.1073/pnas.0505427102. |
[3] |
L. Cherfils, S. Gatti, A. Miranville and R. Guillevin,
Analysis of a model for tumor growth and lactate exchanges in a glioma, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 2729-2749.
doi: 10.3934/dcdss.2020457. |
[4] |
M. Conti, S. Gatti and A. Miranville, Mathematical analysis of a model for proliterative-to-invasive transition of hypoxic glioma cells, Nonlinear Anal., 189 (2019), 111572, 17 pp.
doi: 10.1016/j.na.2019.111572. |
[5] |
H. Gomez,
Quantitative analysis of the proliferative-to-invasive transition of hypoxic glioma cells, Integr. Biol., 9 (2017), 257-262.
doi: 10.1039/C6IB00208K. |
[6] |
P. Hartman, Ordinary Differential Equation, Corrected Reprint of the Second (1982) Edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
doi: 10.1137/1.9780898719222. |
[7] |
L. Li,
On a coupled Cahn-Hilliard/Cahn-Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells, Commun. Pure Appl. Anal., 20 (2021), 1545-1557.
doi: 10.3934/cpaa.2021032. |
[8] |
L. Li, L. Cherfils, A. Miranville and R. Guillevin,
A Cahn-Hilliard model with a proliferation term for the proliferative-to-invasive transition of hypoxic glioma cells, Commun. Math. Sci., 19 (2021), 1509-1532.
doi: 10.4310/CMS.2021.v19.n6.a3. |
[9] |
L. Li, A. Miranville and R. Guillevin,
Cahn-Hilliard models for glial cells, Appl. Math. Optim., 84 (2021), 1821-1842.
doi: 10.1007/s00245-020-09696-x. |
[10] |
L. Li, A. Miranville and R. Guillevin,
A coupled Cahn-Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells, Quart. Appl. Math., 79 (2021), 383-394.
doi: 10.1090/qam/1585. |
[11] |
B. Mendoza-Juez, A. Martínez-González, G. F. Calvo and V. M. Peréz-García,
A mathematical model for the glucose-lactate metabolism of in vitro cancer cells, Bull. Math. Biol., 74 (2012), 1125-1142.
doi: 10.1007/s11538-011-9711-z. |
[12] |
A. Miranville, E. Rocca and G. Schimperna,
On the long time behavior of a tumor growth model, J. Differential Equations, 267 (2019), 2616-2642.
doi: 10.1016/j.jde.2019.03.028. |
[13] |
B. Muz, P. de la Puente and F. Azab ande A. K. Azab,
The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy, Hypoxia, 3 (2015), 83-92.
doi: 10.2147/HP.S93413. |
show all references
References:
[1] |
A. Aubert and R. Costalat,
Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism, J. Cereb. Blood Flow Metab., 25 (2005), 1476-1490.
doi: 10.1038/sj.jcbfm.9600144. |
[2] |
A. Aubert, R. Costalat, P. Magistretti, J. Pierre and L. Pellerin,
Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation, Proc. National Acad. Sci. USA, 102 (2005), 16448-16453.
doi: 10.1073/pnas.0505427102. |
[3] |
L. Cherfils, S. Gatti, A. Miranville and R. Guillevin,
Analysis of a model for tumor growth and lactate exchanges in a glioma, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 2729-2749.
doi: 10.3934/dcdss.2020457. |
[4] |
M. Conti, S. Gatti and A. Miranville, Mathematical analysis of a model for proliterative-to-invasive transition of hypoxic glioma cells, Nonlinear Anal., 189 (2019), 111572, 17 pp.
doi: 10.1016/j.na.2019.111572. |
[5] |
H. Gomez,
Quantitative analysis of the proliferative-to-invasive transition of hypoxic glioma cells, Integr. Biol., 9 (2017), 257-262.
doi: 10.1039/C6IB00208K. |
[6] |
P. Hartman, Ordinary Differential Equation, Corrected Reprint of the Second (1982) Edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
doi: 10.1137/1.9780898719222. |
[7] |
L. Li,
On a coupled Cahn-Hilliard/Cahn-Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells, Commun. Pure Appl. Anal., 20 (2021), 1545-1557.
doi: 10.3934/cpaa.2021032. |
[8] |
L. Li, L. Cherfils, A. Miranville and R. Guillevin,
A Cahn-Hilliard model with a proliferation term for the proliferative-to-invasive transition of hypoxic glioma cells, Commun. Math. Sci., 19 (2021), 1509-1532.
doi: 10.4310/CMS.2021.v19.n6.a3. |
[9] |
L. Li, A. Miranville and R. Guillevin,
Cahn-Hilliard models for glial cells, Appl. Math. Optim., 84 (2021), 1821-1842.
doi: 10.1007/s00245-020-09696-x. |
[10] |
L. Li, A. Miranville and R. Guillevin,
A coupled Cahn-Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells, Quart. Appl. Math., 79 (2021), 383-394.
doi: 10.1090/qam/1585. |
[11] |
B. Mendoza-Juez, A. Martínez-González, G. F. Calvo and V. M. Peréz-García,
A mathematical model for the glucose-lactate metabolism of in vitro cancer cells, Bull. Math. Biol., 74 (2012), 1125-1142.
doi: 10.1007/s11538-011-9711-z. |
[12] |
A. Miranville, E. Rocca and G. Schimperna,
On the long time behavior of a tumor growth model, J. Differential Equations, 267 (2019), 2616-2642.
doi: 10.1016/j.jde.2019.03.028. |
[13] |
B. Muz, P. de la Puente and F. Azab ande A. K. Azab,
The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy, Hypoxia, 3 (2015), 83-92.
doi: 10.2147/HP.S93413. |
[1] |
Lu Li. On a coupled Cahn–Hilliard/Cahn–Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1545-1557. doi: 10.3934/cpaa.2021032 |
[2] |
Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259 |
[3] |
Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007 |
[4] |
Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036 |
[5] |
Elissar Nasreddine. Well-posedness for a model of individual clustering. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2647-2668. doi: 10.3934/dcdsb.2013.18.2647 |
[6] |
Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241 |
[7] |
Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1 |
[8] |
David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113 |
[9] |
A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469 |
[10] |
Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem†. Evolution Equations and Control Theory, 2020, 9 (4) : 1167-1185. doi: 10.3934/eect.2020048 |
[11] |
Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527 |
[12] |
Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations and Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15 |
[13] |
Razvan C. Fetecau, Francesco S. Patacchini. Well-posedness of an interaction model on Riemannian manifolds. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022114 |
[14] |
Hongjun Gao, Chengfeng Sun. Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3053-3073. doi: 10.3934/dcdsb.2016087 |
[15] |
Hongwei Wang, Amin Esfahani. Well-posedness and asymptotic behavior of the dissipative Ostrovsky equation. Evolution Equations and Control Theory, 2019, 8 (4) : 709-735. doi: 10.3934/eect.2019035 |
[16] |
Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393 |
[17] |
Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255 |
[18] |
Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic and Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029 |
[19] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[20] |
Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]