June  2022, 15(6): 1547-1560. doi: 10.3934/dcdss.2022007

Stability analysis of pressure and penetration rate in rotary drilling system

LIM laboratory, Polytechnic School of Tunisia, BP 743, 2078 La Marsa, Tunisia

*Corresponding author: Rhouma Mlayeh

Received  August 2021 Revised  October 2021 Published  June 2022 Early access  January 2022

The purpose of this paper is to stabilize the annular pressure profile throughout the well bore continuously while drilling. A new nonlinear dynamical system is developed and a controller is designed to stabilize the annular pressure and achieve asymptotic tracking by applying feedback control of the main pumps. Hence, the paper studies the control design for the well known Managed Pressure Drilling system (MPD). MPD provides a closed loop drilling process in which pore pressure, formation fracture pressure, and bottomhole pressure are balanced and managed at surface. Although, responses must provide a solution for critical downhole pressures to preserve drilling efficiency and safety. Our MPD scheme is elaborated in reference to a nontrivial backstepping control procedure, and the effectiveness of the proposed control laws is shown by simulations.

Citation: Rhouma Mlayeh. Stability analysis of pressure and penetration rate in rotary drilling system. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1547-1560. doi: 10.3934/dcdss.2022007
References:
[1]

M. T. Alrifai, J. H. Chow and D. A. Torrey, A backstepping nonlinear control approach to switched reluctance motors, Proceedings of the 37th IEEE Conference on Decision and Control, (1998). doi: 10.1109/CDC.1998.762067.

[2]

J. J. Bailey and I. Finnie, An Analytical study of drill-string vibration, J. Eng. Ind., 82 (1960), 122-127.  doi: 10.1115/1.3663017.

[3]

G. C. Downton, Challenges of modeling drilling systems for the purposes of automation and control, IFAC Proceedings Volumes, 45 (2012), 201-210.  doi: 10.3182/20120531-2-NO-4020.00054.

[4]

S. Dwars, Recent dvances in Soft Torque Rotary Systems, Paper presented at the SPE/IADC Drilling Conference and Exhibition, London, England, UK, March 2015. doi: 10.2118/173037-MS.

[5]

G. O. KaasaØ. N. StamnesO. M. Aamo and L. S. Imsland, Simplified hydraulics model used for intelligent estimation of downhole pressure for a managed-pressure-drilling control system, SPE Drilling and Completion, 27 (2012), 127-138.  doi: 10.2118/143097-PA.

[6]

E. Kreuzer, L. Krumm, M. A. Pick, E. Solowjow and M. Steidl, Active Vibration Isolation Via Decomposition of Traveling Waves, 11th International Conference on Vibration Problems, Lisbon, Portugal, 2013.

[7]

M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nonlinear and Adaptive Control Design, Wiley-Interscience, 1995. doi: 10.0471127329.

[8]

X. LiuN. VlajicX. LongG. Meng and B. Balachandran, Coupled axial-torsional dynamics in rotary drilling with state-dependent delay: Stability and control, Nonlinear Dynamics, 78 (2014), 1891-1906.  doi: 10.1007/s11071-014-1567-y.

[9]

R. Lozano and B. Brogliat, Adaptive control of robot manipulators with flexible joints, IEEE Trans. Automat. Control, 37 (1992), 174-181.  doi: 10.1109/9.121619.

[10]

H. J. Marquez, Nonlinear Control Systems: Analysis and Design, Wiley, 2003.

[11]

E. Navarro-López and R. Suáre, Practical approach to modelling and controlling stick-slip oscillations in oilwell drillstrings, Proceedings of the 2004 IEEE International Conference on Control Applications, 2 (2004), 1454-1460.  doi: 10.1109/CCA.2004.1387580.

[12]

B. SaldivarS. MondieJ. J. Loiseau and V. Rasvan, Stick-Slip oscillations in oillwell drillstrings: Distributed parameter and neutral type retarded model approaches, IFAC Proceedings Volumes, 44 (2011), 284-289.  doi: 10.3182/20110828-6-IT-1002.00084.

[13]

B. SaldivarS. MondiéS.-I. NiculescuH. Mounier and I. Boussaada, A control oriented guided tour in oilwell drilling vibration modeling, Annual Reviews in Control, 42 (2016), 100-113.  doi: 10.1016/j.arcontrol.2016.09.002.

[14]

R. Skjetne and T. I. Fossen, On Integral Control in Backstepping Analysis of Different Techniques, Control Applications. Proceedings of the 2004 IEEE International Conference, (2004), 1899–1904. doi: 10.23919/ACC.2004.1386858.

[15]

Y. N. Stamnes, Thesis for the degree of philosophiae doctor, NTNU Norwegian Universty Science of Technology, Trondheim, Mathematics and Electrical Engineering, Department of Engineering Cybernetics, (2011).

[16]

S. Toumi, L. Beji and R. Mlayeh, Torsional vibration suppression with boundary impulsive conditions in rotary drilling system, IIEEE 58th Conference on Decision and Control (CDC 2019), (2019). doi: 10.1109/CDC40024.2019.9029411.

[17]

S. Toumi, L. Beji, R. Mlayeh and A. Abichou, Stabilization of stick-slip oscillations Integrating fluid injection in oilwell drillstring system, European Control Conference, (2016), 352–357. doi: 10.1109/ECC.2016.7810310.

[18]

S. Toumi, L. Beji, R. Mlayeh and A. Abichou, Boundary observer design for hyperbolic PDE in rotary drilling systems, IEEE 55th Conference on Decision and Control (CDC), Las Vegas, USA, (2016), 2128–2133. doi: 10.1109/CDC.2016.7798578.

[19]

S. ToumiL. BejiR. Mlayeh and A. Abichou, Stabilization of torsional vibration in oilwell drillstring system, Eur. J. Control, 35 (2017), 19-27.  doi: 10.1016/j.ejcon.2017.03.002.

[20]

S. ToumiL. BejiR. Mlayeh and A. Abichou, Stability analysis of coupled torsional vibration and pressure in oilwell drillstring system, International Journal of Control, 91 (2017), 241-252.  doi: 10.1080/00207179.2016.1278269.

[21]

S. Toumi, R. Mlayeh, L. Beji and A. Abichou, Stability analysis of oilwell drilling torsional vibrations, Control and Automation (MED), 24th Mediterranean Conference, (2016), 677–682. doi: 10.1109/MED.2016.7535945.

[22]

F. White, Fluid Mechanics, New York: McGraw-Hill (2008), 2008.

show all references

References:
[1]

M. T. Alrifai, J. H. Chow and D. A. Torrey, A backstepping nonlinear control approach to switched reluctance motors, Proceedings of the 37th IEEE Conference on Decision and Control, (1998). doi: 10.1109/CDC.1998.762067.

[2]

J. J. Bailey and I. Finnie, An Analytical study of drill-string vibration, J. Eng. Ind., 82 (1960), 122-127.  doi: 10.1115/1.3663017.

[3]

G. C. Downton, Challenges of modeling drilling systems for the purposes of automation and control, IFAC Proceedings Volumes, 45 (2012), 201-210.  doi: 10.3182/20120531-2-NO-4020.00054.

[4]

S. Dwars, Recent dvances in Soft Torque Rotary Systems, Paper presented at the SPE/IADC Drilling Conference and Exhibition, London, England, UK, March 2015. doi: 10.2118/173037-MS.

[5]

G. O. KaasaØ. N. StamnesO. M. Aamo and L. S. Imsland, Simplified hydraulics model used for intelligent estimation of downhole pressure for a managed-pressure-drilling control system, SPE Drilling and Completion, 27 (2012), 127-138.  doi: 10.2118/143097-PA.

[6]

E. Kreuzer, L. Krumm, M. A. Pick, E. Solowjow and M. Steidl, Active Vibration Isolation Via Decomposition of Traveling Waves, 11th International Conference on Vibration Problems, Lisbon, Portugal, 2013.

[7]

M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nonlinear and Adaptive Control Design, Wiley-Interscience, 1995. doi: 10.0471127329.

[8]

X. LiuN. VlajicX. LongG. Meng and B. Balachandran, Coupled axial-torsional dynamics in rotary drilling with state-dependent delay: Stability and control, Nonlinear Dynamics, 78 (2014), 1891-1906.  doi: 10.1007/s11071-014-1567-y.

[9]

R. Lozano and B. Brogliat, Adaptive control of robot manipulators with flexible joints, IEEE Trans. Automat. Control, 37 (1992), 174-181.  doi: 10.1109/9.121619.

[10]

H. J. Marquez, Nonlinear Control Systems: Analysis and Design, Wiley, 2003.

[11]

E. Navarro-López and R. Suáre, Practical approach to modelling and controlling stick-slip oscillations in oilwell drillstrings, Proceedings of the 2004 IEEE International Conference on Control Applications, 2 (2004), 1454-1460.  doi: 10.1109/CCA.2004.1387580.

[12]

B. SaldivarS. MondieJ. J. Loiseau and V. Rasvan, Stick-Slip oscillations in oillwell drillstrings: Distributed parameter and neutral type retarded model approaches, IFAC Proceedings Volumes, 44 (2011), 284-289.  doi: 10.3182/20110828-6-IT-1002.00084.

[13]

B. SaldivarS. MondiéS.-I. NiculescuH. Mounier and I. Boussaada, A control oriented guided tour in oilwell drilling vibration modeling, Annual Reviews in Control, 42 (2016), 100-113.  doi: 10.1016/j.arcontrol.2016.09.002.

[14]

R. Skjetne and T. I. Fossen, On Integral Control in Backstepping Analysis of Different Techniques, Control Applications. Proceedings of the 2004 IEEE International Conference, (2004), 1899–1904. doi: 10.23919/ACC.2004.1386858.

[15]

Y. N. Stamnes, Thesis for the degree of philosophiae doctor, NTNU Norwegian Universty Science of Technology, Trondheim, Mathematics and Electrical Engineering, Department of Engineering Cybernetics, (2011).

[16]

S. Toumi, L. Beji and R. Mlayeh, Torsional vibration suppression with boundary impulsive conditions in rotary drilling system, IIEEE 58th Conference on Decision and Control (CDC 2019), (2019). doi: 10.1109/CDC40024.2019.9029411.

[17]

S. Toumi, L. Beji, R. Mlayeh and A. Abichou, Stabilization of stick-slip oscillations Integrating fluid injection in oilwell drillstring system, European Control Conference, (2016), 352–357. doi: 10.1109/ECC.2016.7810310.

[18]

S. Toumi, L. Beji, R. Mlayeh and A. Abichou, Boundary observer design for hyperbolic PDE in rotary drilling systems, IEEE 55th Conference on Decision and Control (CDC), Las Vegas, USA, (2016), 2128–2133. doi: 10.1109/CDC.2016.7798578.

[19]

S. ToumiL. BejiR. Mlayeh and A. Abichou, Stabilization of torsional vibration in oilwell drillstring system, Eur. J. Control, 35 (2017), 19-27.  doi: 10.1016/j.ejcon.2017.03.002.

[20]

S. ToumiL. BejiR. Mlayeh and A. Abichou, Stability analysis of coupled torsional vibration and pressure in oilwell drillstring system, International Journal of Control, 91 (2017), 241-252.  doi: 10.1080/00207179.2016.1278269.

[21]

S. Toumi, R. Mlayeh, L. Beji and A. Abichou, Stability analysis of oilwell drilling torsional vibrations, Control and Automation (MED), 24th Mediterranean Conference, (2016), 677–682. doi: 10.1109/MED.2016.7535945.

[22]

F. White, Fluid Mechanics, New York: McGraw-Hill (2008), 2008.

Figure 1.  MPD in Rotary Drilling System
Figure 2.  Stabilization of the state $ y $
Figure 3.  Stabilization of the pressure $ P_2 $
Figure 4.  Stabilization of the penetration rate of the bit $ v $
Figure 5.  Stabilization of the rotation velocity of the drill string $ \Omega $
Figure 6.  Stabilization of the the flow rate from the tool $ q_{bit} $
Figure 7.  Stabilization of the control law $ u_1 $
Figure 8.  Stabilization of the control law $ u_4 $
Table 1.  Different physical parameters
VariableValue
$L$ $2000~m$
$I$ $0.095~kg.m$
$\rho_1 = \rho_3$ $1250~kg. m^{-3}$
$M$ $8300~kg.m^{-4}$
$\beta_1 = \beta_3$ $24750~bar$
$V_0$ $110~ m^3$
$g$ $9.81~ m s^{-2}$
$S$ $\pi\times(0.25)^2~ m^2$
$c_d$ $0.61$
$T_a$ $0.003. 10^6~ \frac{bar. s^2}{m^6}$
VariableValue
$L$ $2000~m$
$I$ $0.095~kg.m$
$\rho_1 = \rho_3$ $1250~kg. m^{-3}$
$M$ $8300~kg.m^{-4}$
$\beta_1 = \beta_3$ $24750~bar$
$V_0$ $110~ m^3$
$g$ $9.81~ m s^{-2}$
$S$ $\pi\times(0.25)^2~ m^2$
$c_d$ $0.61$
$T_a$ $0.003. 10^6~ \frac{bar. s^2}{m^6}$
[1]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure and Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[2]

Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021057

[3]

Daniel G. Alfaro Vigo, Amaury C. Álvarez, Grigori Chapiro, Galina C. García, Carlos G. Moreira. Solving the inverse problem for an ordinary differential equation using conjugation. Journal of Computational Dynamics, 2020, 7 (2) : 183-208. doi: 10.3934/jcd.2020008

[4]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[5]

Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268

[6]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[7]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

[8]

Lijuan Wang, Yashan Xu. Admissible controls and controllable sets for a linear time-varying ordinary differential equation. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1001-1019. doi: 10.3934/mcrf.2018043

[9]

Qiong Meng, X. H. Tang. Multiple solutions of second-order ordinary differential equation via Morse theory. Communications on Pure and Applied Analysis, 2012, 11 (3) : 945-958. doi: 10.3934/cpaa.2012.11.945

[10]

Jan-Hendrik Webert, Philip E. Gill, Sven-Joachim Kimmerle, Matthias Gerdts. A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1259-1282. doi: 10.3934/dcdss.2018071

[11]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 321-337. doi: 10.3934/naco.2021008

[12]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040

[13]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[14]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[15]

Janosch Rieger. The Euler scheme for state constrained ordinary differential inclusions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2729-2744. doi: 10.3934/dcdsb.2016070

[16]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[17]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[18]

Joseph M. Mahaffy, Timothy C. Busken. Regions of stability for a linear differential equation with two rationally dependent delays. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4955-4986. doi: 10.3934/dcds.2015.35.4955

[19]

Tomasz Kapela, Piotr Zgliczyński. A Lohner-type algorithm for control systems and ordinary differential inclusions. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 365-385. doi: 10.3934/dcdsb.2009.11.365

[20]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (196)
  • HTML views (157)
  • Cited by (0)

Other articles
by authors

[Back to Top]