-
Previous Article
Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping
- DCDS-S Home
- This Issue
-
Next Article
Polynomial stability in viscoelastic network of strings
Recovering time-dependent diffusion coefficients in a nonautonomous parabolic equation from energy measurements
1. | Dipartimento di Matematica, Universitá di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna BO, Italy |
2. | Department of Science and Engeneering, Sorbonne Unversity Abu Dhabi, Al Reem Island, 51133 Abu Dhabi, United Arab Emirates |
3. | Dipartimento di Matematica, Universitá degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari BA, Italy |
$ \left(H, \langle \cdot, \cdot \rangle \right) $ |
$ A_{i}:D(A_i) \to H $ |
$ i = 1, \cdots, n $ |
$ u:[0, T] \to H $ |
$ n $ |
$ \alpha_{1}, \cdots, \alpha_{n}:[s, T] \to {\mathbb{R}}_+ $ |
$ u'(t) + \alpha_{1}(t) A_{1}u(t) + \cdots + \alpha_{n}(t) A_{n}u(t) = 0, \quad s \leq t \leq T, \quad u(s) = x, $ |
$ \langle A_{1} u(t), u(t)\rangle = \varphi_{1}(t), \quad \cdots \quad, \langle A_{n} u(t), u(t)\rangle = \varphi_{n}(t), \quad s \leq t \leq T. $ |
$ A_i $ |
$ i = 1, \cdots, n $ |
$ x\in H $ |
$ \varphi_i $ |
$ i = 1, \cdots, n $ |
References:
[1] |
M. Akamatsu, G. Nakamura and S. Steinberg,
Identification of Lamé coefficients from boundary observations, Inverse Problems, 7 (1991), 335-354.
|
[2] |
K.-C. Chang, Methods in Nonlinear Analysis, Monographs in Mathematics, Springer-Verlag, Berlin and New York, 2005. |
[3] |
D. Huang, Y. Li and D. Pei, Identification of a time-dependent coefficient in heat conduction problem by new iteration method, Adv. Math. Phys., 2018 (2018), Art. ID 4918256, 7 pp.
doi: 10.1155/2018/4918256. |
[4] |
M. Ivanchov, Inverse Problems for Equations of Parabolic Type, VNTL Publications, L'viv, Ukraine, 2003. |
[5] |
N. I. Ivanchov,
On the inverse problem of simultaneous determination of thermal conductivity and specific heat capacity, Sib. Math. J., 35 (1994), 547-555.
doi: 10.1007/BF02104818. |
[6] |
N. I. Ivanchov and N. V. Pabyrivska,
On determination of two time-dependent coefficients in a parabolic equation, Sib. Math. J., 43 (2002), 323-329.
doi: 10.1023/A:1014749222472. |
[7] |
T. Kato,
Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan, 5 (1953), 208-234.
doi: 10.2969/jmsj/00520208. |
[8] |
T. Kato, Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften, 132, Springer-Verlag, Berlin and New York, 1966; 2nd ed., 1976. |
[9] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in nonlinear differential equations and their application Vol. 16, Birkhauser, Basel-Boston-Berlin, 1995.
doi: 10.1007/978-3-0348-9234-6. |
[10] |
G. Mola,
Recovering a large number of diffusion constants in a parabolic equations from energy measurements, Inverse Problems and Imaging, 12 (2018), 527-543.
doi: 10.3934/ipi.2018023. |
[11] |
G. Mola, N. Okazawa and T. Yokota, Reconstruction of two constant coefficients in linear anisotropic diffusion model, Inverse Problems, 32 (2016), 115016, 22 pp.
doi: 10.1088/0266-5611/32/11/115016. |
[12] |
G. Nakamura and G. Uhlmann,
Identification of Lamé parameters by boundary measurements, Amer. J. Math., 115 (1993), 1161-1187.
doi: 10.2307/2375069. |
[13] |
A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, M. Dekker, New York, 2000. |
[14] |
D. Trucu, D. B. Ingham and D. Lesnic,
Inverse time-dependent perfusion coefficient identification, J. Phys. Conf. Ser., 124 (2008), 012050.
|
[15] |
S. J. L. van Eijndhoven and J. de Graaf,
A fundamental approach to the generalized eigenvalue problem for self-adjoint operators, J. Functional Analysis, 63 (1985), 74-85.
doi: 10.1016/0022-1236(85)90098-9. |
show all references
References:
[1] |
M. Akamatsu, G. Nakamura and S. Steinberg,
Identification of Lamé coefficients from boundary observations, Inverse Problems, 7 (1991), 335-354.
|
[2] |
K.-C. Chang, Methods in Nonlinear Analysis, Monographs in Mathematics, Springer-Verlag, Berlin and New York, 2005. |
[3] |
D. Huang, Y. Li and D. Pei, Identification of a time-dependent coefficient in heat conduction problem by new iteration method, Adv. Math. Phys., 2018 (2018), Art. ID 4918256, 7 pp.
doi: 10.1155/2018/4918256. |
[4] |
M. Ivanchov, Inverse Problems for Equations of Parabolic Type, VNTL Publications, L'viv, Ukraine, 2003. |
[5] |
N. I. Ivanchov,
On the inverse problem of simultaneous determination of thermal conductivity and specific heat capacity, Sib. Math. J., 35 (1994), 547-555.
doi: 10.1007/BF02104818. |
[6] |
N. I. Ivanchov and N. V. Pabyrivska,
On determination of two time-dependent coefficients in a parabolic equation, Sib. Math. J., 43 (2002), 323-329.
doi: 10.1023/A:1014749222472. |
[7] |
T. Kato,
Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan, 5 (1953), 208-234.
doi: 10.2969/jmsj/00520208. |
[8] |
T. Kato, Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften, 132, Springer-Verlag, Berlin and New York, 1966; 2nd ed., 1976. |
[9] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in nonlinear differential equations and their application Vol. 16, Birkhauser, Basel-Boston-Berlin, 1995.
doi: 10.1007/978-3-0348-9234-6. |
[10] |
G. Mola,
Recovering a large number of diffusion constants in a parabolic equations from energy measurements, Inverse Problems and Imaging, 12 (2018), 527-543.
doi: 10.3934/ipi.2018023. |
[11] |
G. Mola, N. Okazawa and T. Yokota, Reconstruction of two constant coefficients in linear anisotropic diffusion model, Inverse Problems, 32 (2016), 115016, 22 pp.
doi: 10.1088/0266-5611/32/11/115016. |
[12] |
G. Nakamura and G. Uhlmann,
Identification of Lamé parameters by boundary measurements, Amer. J. Math., 115 (1993), 1161-1187.
doi: 10.2307/2375069. |
[13] |
A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, M. Dekker, New York, 2000. |
[14] |
D. Trucu, D. B. Ingham and D. Lesnic,
Inverse time-dependent perfusion coefficient identification, J. Phys. Conf. Ser., 124 (2008), 012050.
|
[15] |
S. J. L. van Eijndhoven and J. de Graaf,
A fundamental approach to the generalized eigenvalue problem for self-adjoint operators, J. Functional Analysis, 63 (1985), 74-85.
doi: 10.1016/0022-1236(85)90098-9. |
[1] |
Alfredo Lorenzi, Gianluca Mola. Identification of a real constant in linear evolution equations in Hilbert spaces. Inverse Problems and Imaging, 2011, 5 (3) : 695-714. doi: 10.3934/ipi.2011.5.695 |
[2] |
Tôn Việt Tạ. Existence results for linear evolution equations of parabolic type. Communications on Pure and Applied Analysis, 2018, 17 (3) : 751-785. doi: 10.3934/cpaa.2018039 |
[3] |
Jin-Mun Jeong, Seong-Ho Cho. Identification problems of retarded differential systems in Hilbert spaces. Evolution Equations and Control Theory, 2017, 6 (1) : 77-91. doi: 10.3934/eect.2017005 |
[4] |
Jin Liang, James H. Liu, Ti-Jun Xiao. Nonlocal Cauchy problems for nonautonomous evolution equations. Communications on Pure and Applied Analysis, 2006, 5 (3) : 529-535. doi: 10.3934/cpaa.2006.5.529 |
[5] |
Janusz Mierczyński, Wenxian Shen. Time averaging for nonautonomous/random linear parabolic equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 661-699. doi: 10.3934/dcdsb.2008.9.661 |
[6] |
Pengyu Chen, Yongxiang Li, Xuping Zhang. On the initial value problem of fractional stochastic evolution equations in Hilbert spaces. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1817-1840. doi: 10.3934/cpaa.2015.14.1817 |
[7] |
Fatihcan M. Atay, Lavinia Roncoroni. Lumpability of linear evolution Equations in Banach spaces. Evolution Equations and Control Theory, 2017, 6 (1) : 15-34. doi: 10.3934/eect.2017002 |
[8] |
A. Rodríguez-Bernal. Perturbation of the exponential type of linear nonautonomous parabolic equations and applications to nonlinear equations. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 1003-1032. doi: 10.3934/dcds.2009.25.1003 |
[9] |
Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems for evolution equations with time dependent operator-coefficients. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 737-744. doi: 10.3934/dcdss.2016025 |
[10] |
Huijie Qiao, Jiang-Lun Wu. On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1449-1467. doi: 10.3934/dcdsb.2018215 |
[11] |
Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations and Control Theory, 2020, 9 (2) : 359-373. doi: 10.3934/eect.2020009 |
[12] |
Hildebrando M. Rodrigues, J. Solà-Morales, G. K. Nakassima. Stability problems in nonautonomous linear differential equations in infinite dimensions. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3189-3207. doi: 10.3934/cpaa.2020138 |
[13] |
Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893 |
[14] |
Hiroshi Watanabe. Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 177-189. doi: 10.3934/dcdss.2014.7.177 |
[15] |
Tyrone E. Duncan. Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5435-5445. doi: 10.3934/dcds.2015.35.5435 |
[16] |
Christian Pötzsche, Evamaria Russ. Topological decoupling and linearization of nonautonomous evolution equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1235-1268. doi: 10.3934/dcdss.2016050 |
[17] |
Irene Benedetti, Luisa Malaguti, Valentina Taddei. Nonlocal problems in Hilbert spaces. Conference Publications, 2015, 2015 (special) : 103-111. doi: 10.3934/proc.2015.0103 |
[18] |
Goro Akagi, Mitsuharu Ôtani. Evolution equations and subdifferentials in Banach spaces. Conference Publications, 2003, 2003 (Special) : 11-20. doi: 10.3934/proc.2003.2003.11 |
[19] |
Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011 |
[20] |
Behzad Azmi, Karl Kunisch, Sérgio S. Rodrigues. Stabilization of nonautonomous parabolic equations by a single moving actuator. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5789-5824. doi: 10.3934/dcds.2021096 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]