\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Recovering time-dependent diffusion coefficients in a nonautonomous parabolic equation from energy measurements

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • Let $ \left(H, \langle \cdot, \cdot \rangle \right) $ be a separable Hilbert space and $ A_{i}:D(A_i) \to H $ ($ i = 1, \cdots, n $) be a family of nonnegative selfadjoint operators mutually commuting. We study the inverse problem consisting in the identification of the function $ u:[0, T] \to H $ and $ n $ time-dependent diffusion coefficients $ \alpha_{1}, \cdots, \alpha_{n}:[s, T] \to {\mathbb{R}}_+ $ that fulfill the initial-value problem

    $ u'(t) + \alpha_{1}(t) A_{1}u(t) + \cdots + \alpha_{n}(t) A_{n}u(t) = 0, \quad s \leq t \leq T, \quad u(s) = x, $

    and the additional conditions

    $ \langle A_{1} u(t), u(t)\rangle = \varphi_{1}(t), \quad \cdots \quad, \langle A_{n} u(t), u(t)\rangle = \varphi_{n}(t), \quad s \leq t \leq T. $

    Under suitable assumptions on the operators $ A_i $, $ i = 1, \cdots, n $, on the initial data $ x\in H $ and on the given functions $ \varphi_i $, $ i = 1, \cdots, n $, we shall prove that the solution of such a problem exists, is unique and depends continuously on the data. We apply the abstract result to the identification of diffusion coefficients in a heat equation and of the Lamé parameters in an elasticity problem on a plate.

    Mathematics Subject Classification: Primary: 35R30, 35K90, 47B25; Secondary: 35K20, 35K25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. AkamatsuG. Nakamura and S. Steinberg, Identification of Lamé coefficients from boundary observations, Inverse Problems, 7 (1991), 335-354. 
    [2] K.-C. Chang, Methods in Nonlinear Analysis, Monographs in Mathematics, Springer-Verlag, Berlin and New York, 2005.
    [3] D. Huang, Y. Li and D. Pei, Identification of a time-dependent coefficient in heat conduction problem by new iteration method, Adv. Math. Phys., 2018 (2018), Art. ID 4918256, 7 pp. doi: 10.1155/2018/4918256.
    [4] M. Ivanchov, Inverse Problems for Equations of Parabolic Type, VNTL Publications, L'viv, Ukraine, 2003.
    [5] N. I. Ivanchov, On the inverse problem of simultaneous determination of thermal conductivity and specific heat capacity, Sib. Math. J., 35 (1994), 547-555.  doi: 10.1007/BF02104818.
    [6] N. I. Ivanchov and N. V. Pabyrivska, On determination of two time-dependent coefficients in a parabolic equation, Sib. Math. J., 43 (2002), 323-329.  doi: 10.1023/A:1014749222472.
    [7] T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan, 5 (1953), 208-234.  doi: 10.2969/jmsj/00520208.
    [8] T. Kato, Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften, 132, Springer-Verlag, Berlin and New York, 1966; 2nd ed., 1976.
    [9] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in nonlinear differential equations and their application Vol. 16, Birkhauser, Basel-Boston-Berlin, 1995. doi: 10.1007/978-3-0348-9234-6.
    [10] G. Mola, Recovering a large number of diffusion constants in a parabolic equations from energy measurements, Inverse Problems and Imaging, 12 (2018), 527-543.  doi: 10.3934/ipi.2018023.
    [11] G. Mola, N. Okazawa and T. Yokota, Reconstruction of two constant coefficients in linear anisotropic diffusion model, Inverse Problems, 32 (2016), 115016, 22 pp. doi: 10.1088/0266-5611/32/11/115016.
    [12] G. Nakamura and G. Uhlmann, Identification of Lamé parameters by boundary measurements, Amer. J. Math., 115 (1993), 1161-1187.  doi: 10.2307/2375069.
    [13] A. I. Prilepko, D. G. Orlovsky and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, M. Dekker, New York, 2000.
    [14] D. TrucuD. B. Ingham and D. Lesnic, Inverse time-dependent perfusion coefficient identification, J. Phys. Conf. Ser., 124 (2008), 012050. 
    [15] S. J. L. van Eijndhoven and J. de Graaf, A fundamental approach to the generalized eigenvalue problem for self-adjoint operators, J. Functional Analysis, 63 (1985), 74-85.  doi: 10.1016/0022-1236(85)90098-9.
  • 加载中
SHARE

Article Metrics

HTML views(2026) PDF downloads(160) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return