July  2022, 15(7): 1859-1870. doi: 10.3934/dcdss.2022019

Composite control with observers for a class of stochastic systems with multiple disturbances

School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, China

* Corresponding author: Yunliang Wei

Received  November 2021 Revised  December 2021 Published  July 2022 Early access  February 2022

Fund Project: This work was supported in part by the Youth Creative Team Sci-Tech Program of Shandong Universities (grant no. 2019KJI007) and the Natural Science Foundation of Shandong Province (grant no. ZR2019MF041)

In this paper, the composite anti-disturbances control problem is considered for a class of stochastic systems with multiple disturbances. The states of the system are assumed to be unavailable. A state observer and a disturbance observer are constructed to estimate the states and the matched disturbance respectively. Based on the estimated values of state observer and disturbance observer, a non-fragile composite controller is designed to achieve disturbance attenuation and rejection. By means of the technique of the disturbance compensation control and stochastic control theory, some sufficient conditions are obtained to guarantee that the closed-loop system is asymptotically bounded in mean square or asymptotically stable in probability. Finally, a numerical example is given to verify the validity of the obtained results.

Citation: Yuanyuan Li, Yunliang Wei. Composite control with observers for a class of stochastic systems with multiple disturbances. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1859-1870. doi: 10.3934/dcdss.2022019
References:
[1]

M. Chen and W. Chen, Disturbance-observer-based robust control for time delay uncertain systems, International Journal of Control Automation and Systems, 8 (2010), 445-453. 

[2]

W. ChenJ. Yang and L. Guo, Disturbance-observer-based control and related methods-an overview, IEEE Transactions on Industrial Electronics, 63 (2016), 1083-1095.  doi: 10.1109/TIE.2015.2478397.

[3]

F. DengW. Mao and A. Wan, A novel result on stability analysis for uncertain neutral stochastic time-varying delay systems, Appl. Math. Comput., 221 (2013), 132-143.  doi: 10.1016/j.amc.2013.05.071.

[4]

S. DingJ. Wang and W. Zheng, Second-order sliding mode control for nonlinear uncertain systems bounded by positive functions, IEEE Transactions on Industrial Electronics, 62 (2015), 5899-5909.  doi: 10.1109/TIE.2015.2448064.

[5]

L. Fridman, J. Moreno and R. Iriarte, Sliding Modes after the First Decade of the 21st Century, 2$^{nd}$ edition, Springer Berlin Heidelberg, 2011.

[6]

L. Guo and W. Chen, Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, Internat. J. Robust Nonlinear Control, 15 (2005), 109-125.  doi: 10.1002/rnc.978.

[7]

X. Li and P. Li, Stability of time-delay systems with impulsive control involving stabilizing delays, Automatica J. IFAC, 124 (2021), Paper No. 109336, 6 pp. doi: 10.1016/j.automatica.2020.109336.

[8]

X. LiD. Peng and J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Transactions on Automatic Control, 65 (2020), 4908-4913.  doi: 10.1109/TAC.2020.2964558.

[9]

X. Li and X. Yang, Lyapunov stability analysis for nonlinear systems with state-dependent state delay, Automatica J. IFAC, 112 (2020), 108674, 6 pp. doi: 10.1016/j.automatica.2019.108674.

[10]

X. Mao and C. Yuan, Stochastic Differential Equations With Markovian Switching, 2$^{nd}$ edition, Imperial College Press, London, 2006. doi: 10.1142/p473.

[11]

B. Øksendal, Stochastic Differential Equations-An Introduction with Applications, 6$^{nd}$ edition, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-14394-6.

[12]

H. Sun and L. Guo, Neural network-based DOBC for a class of nonlinear systems with unmatched disturbances, IEEE Transactions on Neural Networks and Learning Systems, 28 (2017), 482-489.  doi: 10.1109/TNNLS.2015.2511450.

[13]

H. SunY. Li and G. Zong, Disturbance attenuation and rejection for stochastic Markovian jump system with partially known transition probabilities, Automatica J. IFAC, 89 (2018), 349-357.  doi: 10.1016/j.automatica.2017.12.046.

[14]

W. SunZ. Zhao and H. Gao, Saturated adaptive robust control for active suspension systems, IEEE Transactions on Industrial Electronics, 60 (2013), 3889-3896.  doi: 10.1109/TIE.2012.2206340.

[15]

Y. Wang, Robust control of a class of uncertain nonlinear systems, Systems Control Lett., 19 (1992), 139-149.  doi: 10.1016/0167-6911(92)90097-C.

[16]

Z. WangY. Liu and X. Liu, Exponential stabilization of a class of stochastic system with markovian jump parameters and mode-dependent mixed time-delays, IEEE Trans. Automat. Control, 55 (2010), 1656-1662.  doi: 10.1109/TAC.2010.2046114.

[17]

X. Wei and N. Chen, Composite hierarchical anti-disturbance control for nonlinear systems with DOBC and fuzzy control, Internat. J. Robust Nonlinear Control, 24 (2014), 362-373.  doi: 10.1002/rnc.2891.

[18]

X. WeiL. Dong and H. Zhang, Adaptive disturbance observer-based control for stochastic systems with multiple heterogeneous disturbances, Internat. J. Robust Nonlinear Control, 29 (2019), 5533-5549.  doi: 10.1002/rnc.4683.

[19]

X. Wei and L. Guo, Composite disturbance-observer-based control and terminal sliding mode control for non-linear systems with disturbances, Internat. J. Control, 82 (2009), 1082-1098.  doi: 10.1080/00207170802455339.

[20]

X. Wei and L. Guo, Composite disturbance observer based control and H-infinity control for complex continuous models, Internat. J. Robust Nonlinear Control, 20 (2010), 106-118.  doi: 10.1002/rnc.1425.

[21]

X. WeiZ. Wu and H. R. Karimi, Disturbance observer-based disturbance attenuation control for a class of stochastic systems, Automatica J. IFAC, 63 (2016), 21-25.  doi: 10.1016/j.automatica.2015.10.019.

[22]

Z. Wu and M. Cui, Stability of stochastic nonlinear systems with state-dependent switching, IEEE Trans. Automat. Control, 58 (2013), 1904-1918.  doi: 10.1109/TAC.2013.2246094.

[23]

J. XieD. Yang and J. Zhao, Composite anti-disturbance model reference adaptive control for switched systems, Inform. Sci., 485 (2019), 71-86.  doi: 10.1016/j.ins.2019.02.016.

[24]

S. XuJ. Lam and Y. Zou, New results on delay-dependent robust H-infinity control for systems with time-varying delays, Automatica J. IFAC, 42 (2006), 343-348.  doi: 10.1016/j.automatica.2005.09.013.

[25]

W. ZhangY. Huang and H. Zhang, Stochastic $H_2/H_\infty$-infinity control for discrete-time systems with state and disturbance dependent noise, Automatica J. IFAC, 43 (2007), 513-521.  doi: 10.1016/j.automatica.2006.09.015.

[26]

G. Zong, Y. Li, et al., Composite anti-disturbance resilient control for Markovian jump nonlinear systems with general uncertain transition rate, Science China Information Sciences, 62 (2019), Article number: 22205. doi: 10.1007/s11432-017-9448-8.

[27]

G. Zong and Q. Wang, Robust resilient control for impulsive switched systems under asynchronous switching, Int. J. Comput. Math., 92 (2015), 1143-1159.  doi: 10.1080/00207160.2014.946413.

[28]

G. ZongD. Yang and L. Hou, Robust finite-time $H_\infty$-infinity control for Markovian jump systems with partially known transition probabilities, J. Franklin Inst., 350 (2013), 1562-1578.  doi: 10.1016/j.jfranklin.2013.04.003.

show all references

References:
[1]

M. Chen and W. Chen, Disturbance-observer-based robust control for time delay uncertain systems, International Journal of Control Automation and Systems, 8 (2010), 445-453. 

[2]

W. ChenJ. Yang and L. Guo, Disturbance-observer-based control and related methods-an overview, IEEE Transactions on Industrial Electronics, 63 (2016), 1083-1095.  doi: 10.1109/TIE.2015.2478397.

[3]

F. DengW. Mao and A. Wan, A novel result on stability analysis for uncertain neutral stochastic time-varying delay systems, Appl. Math. Comput., 221 (2013), 132-143.  doi: 10.1016/j.amc.2013.05.071.

[4]

S. DingJ. Wang and W. Zheng, Second-order sliding mode control for nonlinear uncertain systems bounded by positive functions, IEEE Transactions on Industrial Electronics, 62 (2015), 5899-5909.  doi: 10.1109/TIE.2015.2448064.

[5]

L. Fridman, J. Moreno and R. Iriarte, Sliding Modes after the First Decade of the 21st Century, 2$^{nd}$ edition, Springer Berlin Heidelberg, 2011.

[6]

L. Guo and W. Chen, Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, Internat. J. Robust Nonlinear Control, 15 (2005), 109-125.  doi: 10.1002/rnc.978.

[7]

X. Li and P. Li, Stability of time-delay systems with impulsive control involving stabilizing delays, Automatica J. IFAC, 124 (2021), Paper No. 109336, 6 pp. doi: 10.1016/j.automatica.2020.109336.

[8]

X. LiD. Peng and J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Transactions on Automatic Control, 65 (2020), 4908-4913.  doi: 10.1109/TAC.2020.2964558.

[9]

X. Li and X. Yang, Lyapunov stability analysis for nonlinear systems with state-dependent state delay, Automatica J. IFAC, 112 (2020), 108674, 6 pp. doi: 10.1016/j.automatica.2019.108674.

[10]

X. Mao and C. Yuan, Stochastic Differential Equations With Markovian Switching, 2$^{nd}$ edition, Imperial College Press, London, 2006. doi: 10.1142/p473.

[11]

B. Øksendal, Stochastic Differential Equations-An Introduction with Applications, 6$^{nd}$ edition, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-14394-6.

[12]

H. Sun and L. Guo, Neural network-based DOBC for a class of nonlinear systems with unmatched disturbances, IEEE Transactions on Neural Networks and Learning Systems, 28 (2017), 482-489.  doi: 10.1109/TNNLS.2015.2511450.

[13]

H. SunY. Li and G. Zong, Disturbance attenuation and rejection for stochastic Markovian jump system with partially known transition probabilities, Automatica J. IFAC, 89 (2018), 349-357.  doi: 10.1016/j.automatica.2017.12.046.

[14]

W. SunZ. Zhao and H. Gao, Saturated adaptive robust control for active suspension systems, IEEE Transactions on Industrial Electronics, 60 (2013), 3889-3896.  doi: 10.1109/TIE.2012.2206340.

[15]

Y. Wang, Robust control of a class of uncertain nonlinear systems, Systems Control Lett., 19 (1992), 139-149.  doi: 10.1016/0167-6911(92)90097-C.

[16]

Z. WangY. Liu and X. Liu, Exponential stabilization of a class of stochastic system with markovian jump parameters and mode-dependent mixed time-delays, IEEE Trans. Automat. Control, 55 (2010), 1656-1662.  doi: 10.1109/TAC.2010.2046114.

[17]

X. Wei and N. Chen, Composite hierarchical anti-disturbance control for nonlinear systems with DOBC and fuzzy control, Internat. J. Robust Nonlinear Control, 24 (2014), 362-373.  doi: 10.1002/rnc.2891.

[18]

X. WeiL. Dong and H. Zhang, Adaptive disturbance observer-based control for stochastic systems with multiple heterogeneous disturbances, Internat. J. Robust Nonlinear Control, 29 (2019), 5533-5549.  doi: 10.1002/rnc.4683.

[19]

X. Wei and L. Guo, Composite disturbance-observer-based control and terminal sliding mode control for non-linear systems with disturbances, Internat. J. Control, 82 (2009), 1082-1098.  doi: 10.1080/00207170802455339.

[20]

X. Wei and L. Guo, Composite disturbance observer based control and H-infinity control for complex continuous models, Internat. J. Robust Nonlinear Control, 20 (2010), 106-118.  doi: 10.1002/rnc.1425.

[21]

X. WeiZ. Wu and H. R. Karimi, Disturbance observer-based disturbance attenuation control for a class of stochastic systems, Automatica J. IFAC, 63 (2016), 21-25.  doi: 10.1016/j.automatica.2015.10.019.

[22]

Z. Wu and M. Cui, Stability of stochastic nonlinear systems with state-dependent switching, IEEE Trans. Automat. Control, 58 (2013), 1904-1918.  doi: 10.1109/TAC.2013.2246094.

[23]

J. XieD. Yang and J. Zhao, Composite anti-disturbance model reference adaptive control for switched systems, Inform. Sci., 485 (2019), 71-86.  doi: 10.1016/j.ins.2019.02.016.

[24]

S. XuJ. Lam and Y. Zou, New results on delay-dependent robust H-infinity control for systems with time-varying delays, Automatica J. IFAC, 42 (2006), 343-348.  doi: 10.1016/j.automatica.2005.09.013.

[25]

W. ZhangY. Huang and H. Zhang, Stochastic $H_2/H_\infty$-infinity control for discrete-time systems with state and disturbance dependent noise, Automatica J. IFAC, 43 (2007), 513-521.  doi: 10.1016/j.automatica.2006.09.015.

[26]

G. Zong, Y. Li, et al., Composite anti-disturbance resilient control for Markovian jump nonlinear systems with general uncertain transition rate, Science China Information Sciences, 62 (2019), Article number: 22205. doi: 10.1007/s11432-017-9448-8.

[27]

G. Zong and Q. Wang, Robust resilient control for impulsive switched systems under asynchronous switching, Int. J. Comput. Math., 92 (2015), 1143-1159.  doi: 10.1080/00207160.2014.946413.

[28]

G. ZongD. Yang and L. Hou, Robust finite-time $H_\infty$-infinity control for Markovian jump systems with partially known transition probabilities, J. Franklin Inst., 350 (2013), 1562-1578.  doi: 10.1016/j.jfranklin.2013.04.003.

Figure 1.  The responses of composite system states
Figure 2.  Errors of the estimation of states of system
Figure 3.  Errors of the estimation of disturbance
Figure 4.  The responses of composite system states
Figure 5.  Errors of the estimation of states of system
Figure 6.  Errors of the estimation of disturbance
[1]

Peng Cheng, Yanqing Liu, Yanyan Yin, Song Wang, Feng Pan. Fuzzy event-triggered disturbance rejection control of nonlinear systems. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3297-3307. doi: 10.3934/jimo.2020119

[2]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial and Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[3]

Yipeng Chen, Yicheng Liu, Xiao Wang. Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance. Evolution Equations and Control Theory, 2022, 11 (3) : 729-748. doi: 10.3934/eect.2021023

[4]

Peng Cheng, Feng Pan, Yanyan Yin, Song Wang. Probabilistic robust anti-disturbance control of uncertain systems. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2441-2450. doi: 10.3934/jimo.2020076

[5]

Salma Souhaile, Larbi Afifi. Minimum energy compensation for discrete delayed systems with disturbances. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2489-2508. doi: 10.3934/dcdss.2020119

[6]

Xiuxiang Zhou. Approximations of infinite dimensional disturbance decoupling and almost disturbance decoupling problems. Mathematical Control and Related Fields, 2014, 4 (3) : 381-399. doi: 10.3934/mcrf.2014.4.381

[7]

Xin Meng, Cunchen Gao, Baoping Jiang, Hamid Reza Karimi. Observer-based SMC for stochastic systems with disturbance driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022027

[8]

Juanjuan Huang, Yan Zhou, Xuerong Shi, Zuolei Wang. A single finite-time synchronization scheme of time-delay chaotic system with external periodic disturbance. Mathematical Foundations of Computing, 2019, 2 (4) : 333-346. doi: 10.3934/mfc.2019021

[9]

Mary Chern, Barbara Lee Keyfitz. The unsteady transonic small disturbance equation: Data on oblique curves. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4213-4225. doi: 10.3934/dcds.2016.36.4213

[10]

Jiayuan Yan, Ding-Xue Zhang, Bin Hu, Zhi-Hong Guan, Xin-Ming Cheng. State bounding for time-delay impulsive and switching genetic regulatory networks with exogenous disturbance. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1749-1765. doi: 10.3934/dcdss.2022004

[11]

Yi Cheng, Zhihui Dong, Donal O' Regan. Exponential stability of axially moving Kirchhoff-beam systems with nonlinear boundary damping and disturbance. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4331-4346. doi: 10.3934/dcdsb.2021230

[12]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[13]

Laura Martín-Fernández, Gianni Gilioli, Ettore Lanzarone, Joaquín Míguez, Sara Pasquali, Fabrizio Ruggeri, Diego P. Ruiz. A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system. Mathematical Biosciences & Engineering, 2014, 11 (3) : 573-597. doi: 10.3934/mbe.2014.11.573

[14]

Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101

[15]

Roberto Triggiani. The coupled PDE system of a composite (sandwich) beam revisited. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 285-298. doi: 10.3934/dcdsb.2003.3.285

[16]

Vyacheslav Maksimov. The method of extremal shift in control problems for evolution variational inequalities under disturbances. Evolution Equations and Control Theory, 2022, 11 (4) : 1373-1398. doi: 10.3934/eect.2021048

[17]

Christopher Rackauckas, Qing Nie. Adaptive methods for stochastic differential equations via natural embeddings and rejection sampling with memory. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2731-2761. doi: 10.3934/dcdsb.2017133

[18]

Robert Azencott, Yutheeka Gadhyan. Accurate parameter estimation for coupled stochastic dynamics. Conference Publications, 2009, 2009 (Special) : 44-53. doi: 10.3934/proc.2009.2009.44

[19]

Chunyan Ji, Daqing Jiang. Persistence and non-persistence of a mutualism system with stochastic perturbation. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 867-889. doi: 10.3934/dcds.2012.32.867

[20]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure and Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (160)
  • HTML views (126)
  • Cited by (0)

Other articles
by authors

[Back to Top]