• Previous Article
    Existence of nontrivial solutions to Chern-Simons-Schrödinger system with indefinite potential
  • DCDS-S Home
  • This Issue
  • Next Article
    Initial-boundary value problems for the two-component complex modified Korteweg-de Vries equation on the interval
doi: 10.3934/dcdss.2022022
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On pole assignment of high-order discrete-time linear systems with multiple state and input delays

Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin, 150001, China

*Corresponding author: Xuefei Yang

Received  October 2021 Revised  December 2021 Early access February 2022

Fund Project: This work was supported in part by the National Science Foundation of China (61903102, 61773387), and the Fundamental Research Funds for the Central Universities

This paper studies the problem of pole assignment for high-order discrete-time linear systems with multiple state and input delays. When the number of state delays is larger than or equal to that of input delays, an effective predictor feedback controller is proposed based on the augmented technique, and the design process for the feedback gain is also presented. In addition, it is proved that the pole assignment problem is solvable if and only if the solutions to a linear matrix equation are such that a matrix is nonsingular. When the number of state delays is smaller than that of input delays, the original system is first transformed into a delay-free system with keeping the system controllability invariant, and then, the corresponding controller with designable feedback gain is established. To characterize all of the feedback gains, a factorization approach is introduced which can provide full degree of freedom. Numerical examples are employed to illustrate the effectiveness of the proposed approaches.

Citation: Lixuan Zhang, Xuefei Yang. On pole assignment of high-order discrete-time linear systems with multiple state and input delays. Discrete and Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2022022
References:
[1]

Z. Artstein, Linear systems with delayed controls: A reduction, IEEE Trans. Automat. Control, 27 (1982), 869-879.  doi: 10.1109/TAC.1982.1103023.

[2]

O. BachelierJ. Bosche and D. Mehdi, On pole placement via eigenstructure assignment approach, IEEE Trans. Automat. Control, 51 (2006), 1554-1558.  doi: 10.1109/TAC.2006.880809.

[3]

J. Chiasson and J. J. Loiseau, Applications of Time Delay Systems, Vol. 352, Springer, 2007. doi: 10.1007/978-3-540-49556-7.

[4]

G. R. Duan, Solutions of the equation $AV+BW = VF$ and their application to eigenstructure assignment in linear systems, IEEE Trans. Automat. Control, 38 (1993), 276-280.  doi: 10.1109/9.250470.

[5]

G. R. Duan, Eigenstructure assignment by decentralized output feedback-A complete parametric approach, IEEE Trans. Automat. Control, 39 (1994), 1009-1014.  doi: 10.1109/9.284882.

[6] G. R. Duan, Generalized Sylvester Equations: Unified Parametric Solutions, CRC Press, Boca Raton, FL, 2015.  doi: 10.1201/b18589.
[7]

S. FangJ. Huang and J. Ma, Stabilization of a discrete-time system via nonlinear impulsive control, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 1803-1811.  doi: 10.3934/dcdss.2020106.

[8]

M. Fu, Pole placement via static output feedback is NP-hard, IEEE Trans. Automat. Control, 49 (2004), 855-857.  doi: 10.1109/TAC.2004.828311.

[9]

K. Gu, J. Chen and V. L. Kharitonov, Stability of Time-Delay Systems, Control Engineering. Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-1-4612-0039-0.

[10]

T. Kailath, Linear Systems, Prentice-Hall Information and System Sciences Series. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980.

[11]

J. Klamka, Relative and absolute controllability of discrete systems with delays in control, Internat. J. Control, 26 (1977), 65-74.  doi: 10.1080/00207177708922289.

[12]

X. Le and J. Wang, Neurodynamics-based robust pole assignment for high-order descriptor systems, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 2962-2971.  doi: 10.1109/TNNLS.2015.2461553.

[13]

X. LiT. CaraballoR. Rakkiyappan and X. Han, On the stability of impulsive functional differential equations with infinite delays, Math. Methods Appl. Sci., 38 (2015), 3130-3140.  doi: 10.1002/mma.3303.

[14]

G. P. Liu and R. Patton, Eigenstructure Assignment for Control System Design, New York, NY, USA: Wiley, 1998.

[15]

Q. S. Liu and B. Zhou, Regulation of linear systems with both pointwise and distributed input delays by memoryless feedback, J. Franklin Inst., 356 (2019), 5172-5192.  doi: 10.1016/j.jfranklin.2018.12.032.

[16]

Y. M. Liu and I. K. Fong, On the controllability and observability of discrete-time linear time-delay systems, Internat. J. Systems Sci., 43 (2012), 610-621.  doi: 10.1080/00207721.2010.543490.

[17]

N. Mcdonald, Time Lags in Biological Models, Springer-Verlag, 1978. doi: 10.1007/978-3-642-93107-9.

[18]

E. S. M. Mostafa, A. W. Aboutahoun and F. F. Omar, On the solution of the eigenvalue assignment problem for discrete-time systems, J. Appl. Math., 2017 (2017), Art. ID 7256769, 12 pp. doi: 10.1155/2017/7256769.

[19]

Y. M. RamJ. E. Mottershead and M. G. Tehrani, Partial pole placement with time delay in structures using the receptance and the system matrices, Linear Algebra Appl., 434 (2011), 1689-1696.  doi: 10.1016/j.laa.2010.07.014.

[20]

X. T. Wang and L. Zhang, Partial eigenvalue assignment of high order systems with time delay, Linear Algebra Appl., 438 (2013), 2174-2187.  doi: 10.1016/j.laa.2012.10.011.

[21]

T. WeiX. Xie and X. Li, Input-to-state stability of delayed reaction-diffusion neural networks with multiple impulses, AIMS Math., 6 (2021), 5786-5800.  doi: 10.3934/math.2021342.

[22]

X. YangB. ZhouF. Mazenc and J. Lam, Global stabilization of discrete-time linear systems subject to input saturation and time delay, IEEE Trans. Automat. Control, 66 (2021), 1345-1352.  doi: 10.1109/TAC.2020.2989791.

[23]

Z. X. YangG. B. ZhangG. Tian and Z. Feng, Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 581-603.  doi: 10.3934/dcdss.2017029.

[24]

J. ZhaiL. Gao and S. Li, Robust eigenvalue placement optimization for high-order descriptor systems in a union region with disjoint discs based on harmony search algorithm, Neural Computing and Applications, 28 (2017), 1207-1220.  doi: 10.1007/s00521-016-2422-5.

[25]

L. Zhang, Multi-input partial eigenvalue assignment for high order control systems with time delay, Mechanical Systems and Signal Processing, 72 (2016), 376-382.  doi: 10.1016/j.ymssp.2015.09.033.

[26]

L. Zhang and X. T. Wang, Partial eigenvalue assignment for high order system by multi-input control, Mechanical Systems and Signal Processing, 42 (2014), 129-136.  doi: 10.1016/j.ymssp.2013.06.026.

[27]

Y. Zhao, X. Li and J. Cao, Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency, Appl. Math. Comput., 386 (2020), 125467, 10 pp. doi: 10.1016/j.amc.2020.125467.

[28]

B. Zhou and G. R. Duan, A new solution to the generalized Sylvester matrix equation $AV-EVF=BW$, Systems Control Lett., 55 (2006), 193-198.  doi: 10.1016/j.sysconle.2005.07.002.

[29]

B. Zhou and G. R. Duan, Pole assignment of high-order linear systems with high-order time-derivatives in the input, J. Franklin Inst., 357 (2020), 1437-1456.  doi: 10.1016/j.jfranklin.2019.10.030.

[30]

B. ZhouJ. Lam and G. R. Duan, Full delayed state feedback pole assignment of discrete-time time-delay systems, Optimal Control Appl. Methods, 31 (2010), 155-169.  doi: 10.1002/oca.899.

show all references

References:
[1]

Z. Artstein, Linear systems with delayed controls: A reduction, IEEE Trans. Automat. Control, 27 (1982), 869-879.  doi: 10.1109/TAC.1982.1103023.

[2]

O. BachelierJ. Bosche and D. Mehdi, On pole placement via eigenstructure assignment approach, IEEE Trans. Automat. Control, 51 (2006), 1554-1558.  doi: 10.1109/TAC.2006.880809.

[3]

J. Chiasson and J. J. Loiseau, Applications of Time Delay Systems, Vol. 352, Springer, 2007. doi: 10.1007/978-3-540-49556-7.

[4]

G. R. Duan, Solutions of the equation $AV+BW = VF$ and their application to eigenstructure assignment in linear systems, IEEE Trans. Automat. Control, 38 (1993), 276-280.  doi: 10.1109/9.250470.

[5]

G. R. Duan, Eigenstructure assignment by decentralized output feedback-A complete parametric approach, IEEE Trans. Automat. Control, 39 (1994), 1009-1014.  doi: 10.1109/9.284882.

[6] G. R. Duan, Generalized Sylvester Equations: Unified Parametric Solutions, CRC Press, Boca Raton, FL, 2015.  doi: 10.1201/b18589.
[7]

S. FangJ. Huang and J. Ma, Stabilization of a discrete-time system via nonlinear impulsive control, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 1803-1811.  doi: 10.3934/dcdss.2020106.

[8]

M. Fu, Pole placement via static output feedback is NP-hard, IEEE Trans. Automat. Control, 49 (2004), 855-857.  doi: 10.1109/TAC.2004.828311.

[9]

K. Gu, J. Chen and V. L. Kharitonov, Stability of Time-Delay Systems, Control Engineering. Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-1-4612-0039-0.

[10]

T. Kailath, Linear Systems, Prentice-Hall Information and System Sciences Series. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980.

[11]

J. Klamka, Relative and absolute controllability of discrete systems with delays in control, Internat. J. Control, 26 (1977), 65-74.  doi: 10.1080/00207177708922289.

[12]

X. Le and J. Wang, Neurodynamics-based robust pole assignment for high-order descriptor systems, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 2962-2971.  doi: 10.1109/TNNLS.2015.2461553.

[13]

X. LiT. CaraballoR. Rakkiyappan and X. Han, On the stability of impulsive functional differential equations with infinite delays, Math. Methods Appl. Sci., 38 (2015), 3130-3140.  doi: 10.1002/mma.3303.

[14]

G. P. Liu and R. Patton, Eigenstructure Assignment for Control System Design, New York, NY, USA: Wiley, 1998.

[15]

Q. S. Liu and B. Zhou, Regulation of linear systems with both pointwise and distributed input delays by memoryless feedback, J. Franklin Inst., 356 (2019), 5172-5192.  doi: 10.1016/j.jfranklin.2018.12.032.

[16]

Y. M. Liu and I. K. Fong, On the controllability and observability of discrete-time linear time-delay systems, Internat. J. Systems Sci., 43 (2012), 610-621.  doi: 10.1080/00207721.2010.543490.

[17]

N. Mcdonald, Time Lags in Biological Models, Springer-Verlag, 1978. doi: 10.1007/978-3-642-93107-9.

[18]

E. S. M. Mostafa, A. W. Aboutahoun and F. F. Omar, On the solution of the eigenvalue assignment problem for discrete-time systems, J. Appl. Math., 2017 (2017), Art. ID 7256769, 12 pp. doi: 10.1155/2017/7256769.

[19]

Y. M. RamJ. E. Mottershead and M. G. Tehrani, Partial pole placement with time delay in structures using the receptance and the system matrices, Linear Algebra Appl., 434 (2011), 1689-1696.  doi: 10.1016/j.laa.2010.07.014.

[20]

X. T. Wang and L. Zhang, Partial eigenvalue assignment of high order systems with time delay, Linear Algebra Appl., 438 (2013), 2174-2187.  doi: 10.1016/j.laa.2012.10.011.

[21]

T. WeiX. Xie and X. Li, Input-to-state stability of delayed reaction-diffusion neural networks with multiple impulses, AIMS Math., 6 (2021), 5786-5800.  doi: 10.3934/math.2021342.

[22]

X. YangB. ZhouF. Mazenc and J. Lam, Global stabilization of discrete-time linear systems subject to input saturation and time delay, IEEE Trans. Automat. Control, 66 (2021), 1345-1352.  doi: 10.1109/TAC.2020.2989791.

[23]

Z. X. YangG. B. ZhangG. Tian and Z. Feng, Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 581-603.  doi: 10.3934/dcdss.2017029.

[24]

J. ZhaiL. Gao and S. Li, Robust eigenvalue placement optimization for high-order descriptor systems in a union region with disjoint discs based on harmony search algorithm, Neural Computing and Applications, 28 (2017), 1207-1220.  doi: 10.1007/s00521-016-2422-5.

[25]

L. Zhang, Multi-input partial eigenvalue assignment for high order control systems with time delay, Mechanical Systems and Signal Processing, 72 (2016), 376-382.  doi: 10.1016/j.ymssp.2015.09.033.

[26]

L. Zhang and X. T. Wang, Partial eigenvalue assignment for high order system by multi-input control, Mechanical Systems and Signal Processing, 42 (2014), 129-136.  doi: 10.1016/j.ymssp.2013.06.026.

[27]

Y. Zhao, X. Li and J. Cao, Global exponential stability for impulsive systems with infinite distributed delay based on flexible impulse frequency, Appl. Math. Comput., 386 (2020), 125467, 10 pp. doi: 10.1016/j.amc.2020.125467.

[28]

B. Zhou and G. R. Duan, A new solution to the generalized Sylvester matrix equation $AV-EVF=BW$, Systems Control Lett., 55 (2006), 193-198.  doi: 10.1016/j.sysconle.2005.07.002.

[29]

B. Zhou and G. R. Duan, Pole assignment of high-order linear systems with high-order time-derivatives in the input, J. Franklin Inst., 357 (2020), 1437-1456.  doi: 10.1016/j.jfranklin.2019.10.030.

[30]

B. ZhouJ. Lam and G. R. Duan, Full delayed state feedback pole assignment of discrete-time time-delay systems, Optimal Control Appl. Methods, 31 (2010), 155-169.  doi: 10.1002/oca.899.

Figure 1.  Polar plot of the closed-loop eigenvalues
Figure 2.  State response of time-delay system (32) by predictor feedback
Figure 3.  Polar plot of the closed-loop eigenvalues
Figure 4.  State response of time-delay system (35) by state feedback
[1]

B. Cantó, C. Coll, A. Herrero, E. Sánchez, N. Thome. Pole-assignment of discrete time-delay systems with symmetries. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 641-649. doi: 10.3934/dcdsb.2006.6.641

[2]

K. Aruna Sakthi, A. Vinodkumar. Stabilization on input time-varying delay for linear switched systems with truncated predictor control. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 237-247. doi: 10.3934/naco.2019050

[3]

Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial and Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061

[4]

Therese Mur, Hernan R. Henriquez. Relative controllability of linear systems of fractional order with delay. Mathematical Control and Related Fields, 2015, 5 (4) : 845-858. doi: 10.3934/mcrf.2015.5.845

[5]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial and Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

[6]

Xiaobin Mao, Hua Dai. Partial eigenvalue assignment with time delay robustness. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 207-221. doi: 10.3934/naco.2013.3.207

[7]

Peizhao Yu, Guoshan Zhang. Eigenstructure assignment for polynomial matrix systems ensuring normalization and impulse elimination. Mathematical Foundations of Computing, 2019, 2 (3) : 251-266. doi: 10.3934/mfc.2019016

[8]

Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010

[9]

Ran Dong, Xuerong Mao. Asymptotic stabilization of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations. Mathematical Control and Related Fields, 2020, 10 (4) : 715-734. doi: 10.3934/mcrf.2020017

[10]

Peter Šepitka. Riccati equations for linear Hamiltonian systems without controllability condition. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1685-1730. doi: 10.3934/dcds.2019074

[11]

Peng Cui, Hongguo Zhao, Jun-e Feng. State estimation for discrete linear systems with observation time-delayed noise. Journal of Industrial and Management Optimization, 2011, 7 (1) : 79-85. doi: 10.3934/jimo.2011.7.79

[12]

Le Viet Cuong, Thai Son Doan. Assignability of dichotomy spectra for discrete time-varying linear control systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3597-3607. doi: 10.3934/dcdsb.2020074

[13]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[14]

Akram Kheirabadi, Asadollah Mahmoudzadeh Vaziri, Sohrab Effati. Linear optimal control of time delay systems via Hermite wavelet. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 143-156. doi: 10.3934/naco.2019044

[15]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial and Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[16]

Ping Lin. Feedback controllability for blowup points of semilinear heat equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1425-1434. doi: 10.3934/dcdsb.2017068

[17]

Larbi Berrahmoune. Constrained controllability for lumped linear systems. Evolution Equations and Control Theory, 2015, 4 (2) : 159-175. doi: 10.3934/eect.2015.4.159

[18]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[19]

Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 561-574. doi: 10.3934/dcdss.2020031

[20]

Simone Fiori. Auto-regressive moving-average discrete-time dynamical systems and autocorrelation functions on real-valued Riemannian matrix manifolds. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2785-2808. doi: 10.3934/dcdsb.2014.19.2785

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (201)
  • HTML views (105)
  • Cited by (0)

Other articles
by authors

[Back to Top]