[1]
|
C. Alexander and L. Nogueira, Stochastic Local Volatility, Technical report, Henley Business School, Reading University, 2008.
|
[2]
|
J. Armstrong, M. Forde, M. Lorig and H. Zhang, Small-time asymptotics under local-stochastic volatility with a jump-to-default: Curvature and the heat kernel expansion, SIAM J. Financial Math., 8 (2017), 82-113.
doi: 10.1137/140971397.
|
[3]
|
P. Balland and Q. Tran, SABR goes normal, Risk, 26 (2013), 72.
|
[4]
|
W. Barger and M. Lorig, Approximate pricing of European and barrier claims in a local-stochastic volatility setting, Int. J. Financ. Eng., 4 (2017), 1750018, 31 pp.
doi: 10.1142/S2424786317500189.
|
[5]
|
M. Bufalo and G. Orlando, An improved Barone-Adesi Whaley formula for turbulent markets, J. Comput. Appl. Math., 406 (2022), 113993, 16 pp.
doi: 10.1016/j.cam.2021.113993.
|
[6]
|
P. Carr and D. B. Madan, A note on sufficient conditions for no arbitrage, Finance Research Letters, 2 (2005), 125-130.
doi: 10.1016/j.frl.2005.04.005.
|
[7]
|
B. Chen, C. W. Oosterlee and H. van der Weide, A low-bias simulation scheme for the SABR stochastic volatility model, Int. J. Theor. Appl. Finance, 15 (2012), 1250016, 37 pp.
doi: 10.1142/S0219024912500161.
|
[8]
|
Z. Cui, J. L. Kirkby and D. Nguyen, A general valuation framework for SABR and stochastic local volatility models, SIAM J. Financial Math., 9 (2018), 520-563.
doi: 10.1137/16M1106572.
|
[9]
|
M. Dai, L. Tang and X. Yue, Calibration of stochastic volatility models: A Tikhonov regularization approach, J. Econom. Dynam. Control, 64 (2016), 66-81.
doi: 10.1016/j.jedc.2016.01.002.
|
[10]
|
M. H. A. Davis and D. G. Hobson, The range of traded option prices, Math. Finance, 17 (2007), 1-14.
doi: 10.1111/j.1467-9965.2007.00291.x.
|
[11]
|
E. Derman and I. Kani, Riding on a smile, Risk, 7 (1994), 32-39.
|
[12]
|
E. Derman, I. Kani and N. Chriss, Implied trinomial tress of the volatility smile, The Journal of Derivatives, 3 (1996), 7-22.
doi: 10.3905/jod.1996.407952.
|
[13]
|
D. Diavatopoulos and O. Sokolinskiy, Stochastic volatility models: Faking a smile, in Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning, World Scientific, 2020, 1271–1293.
doi: 10.1142/9789811202391_0033.
|
[14]
|
P. Doust, No-arbitrage SABR, The Journal of Computational Finance, 15 (2012), 3.
|
[15]
|
B. Dupire, Pricing with a smile, Risk, 7 (1994), 18-20.
|
[16]
|
A. Friedmann, Partial Differential Equations of Parabolic type, R. C. Krieger PC, Florida, 1983.
|
[17]
|
J. Guerrero and M. Berrondo, Semiclassical interpretation of Wei-Norman factorization for $SU(1, 1)$ and its related integral transforms, J. Math. Phys., 61 (2020), 082107, 20 pp.
doi: 10.1063/1.5143586.
|
[18]
|
P. S. Hagan, D. Kumar, A. S. Lesniewski and D. E. Woodward, Managing smile risk, The Best of Wilmott, 1 (2002), 249-296.
|
[19]
|
S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327.
|
[20]
|
J. Hull and A. White, The pricing of options on assets with stochastic volatilities, The Journal of Finance, 42 (1987), 281-300.
doi: 10.1111/j.1540-6261.1987.tb02568.x.
|
[21]
|
B. Izgi and A. Bakkaloglu, Fundamental solution of bond pricing in the ho-lee stochastic interest rate model under the invariant criteria, New Trends in Mathematical Sciences, 5 (2017), 196-203.
doi: 10.20852/ntmsci.2017.138.
|
[22]
|
P. Jäckel, Stochastic volatility models: Past, present and future, The Best of Wilmott, 1 (2004), 355-377.
|
[23]
|
M. Kamal and J. Gatheral, Implied volatility surface, Encyclopedia of Quantitative Finance.
doi: 10.1002/9780470061602.eqf08004.
|
[24]
|
Á. Leitao, L. A. Grzelak and C. W. Oosterlee, On a one time-step Monte Carlo simulation approach of the SABR model: Application to European options, Appl. Math. Comput., 293 (2017), 461-479.
doi: 10.1016/j.amc.2016.08.030.
|
[25]
|
M. Mininni, G. Orlando and G. Taglialatela, Challenges in approximating the Black and Scholes call formula with hyperbolic tangents, Decis. Econ. Finance, 44 (2021), 73-100.
doi: 10.1007/s10203-020-00305-8.
|
[26]
|
G. Orlando and M. Bufalo, Empirical evidences on the interconnectedness between sampling and asset returns' distributions, Risks, 9 (2021), 88.
|
[27]
|
G. Orlando and G. Taglialatela, A review on implied volatility calculation, J. Comput. Appl. Math., 320 (2017), 202-220.
doi: 10.1016/j.cam.2017.02.002.
|
[28]
|
G. Orlando and G. Taglialatela, On the approximation of the Black and Scholes call function, J. Comput. Appl. Math., 384 (2021), Paper No. 113154, 14 pp.
doi: 10.1016/j.cam.2020.113154.
|
[29]
|
M. Rubinstein, Implied binomial trees, The Journal of Finance, 49 (1994), 771-818.
doi: 10.1111/j.1540-6261.1994.tb00079.x.
|
[30]
|
E. M. Stein and J. C. Stein, Stock price distributions with stochastic volatility: An analytic approach, The Review of Financial Studies, 4 (1991), 727-752.
doi: 10.1093/rfs/4.4.727.
|
[31]
|
M. C. Thomsett, The Complete Options Trader: A Strategic Reference for Derivatives Profits, Springer, 2018.
|
[32]
|
A. W. van der Stoep, L. A. Grzelak and C. W. Oosterlee, The Heston stochastic-local volatility model: Efficient Monte Carlo simulation, Int. J. Theor. Appl. Finance, 17 (2014), 1450045, 30 pp.
doi: 10.1142/S0219024914500459.
|
[33]
|
J. Wei and E. Norman, Lie algebraic solution of linear differential equations, J. Mathematical Phys., 4 (1963), 575-581.
doi: 10.1063/1.1703993.
|
[34]
|
J. Wei and E. Norman, On global representations of the solutions of linear differential equations as a product of exponentials, Proc. Amer. Math. Soc., 15 (1964), 327-334.
doi: 10.1090/S0002-9939-1964-0160009-0.
|