• Previous Article
    Determination of the initial density in nonlocal diffusion from final time measurements
  • DCDS-S Home
  • This Issue
  • Next Article
    Recovering time-dependent diffusion coefficients in a nonautonomous parabolic equation from energy measurements
June  2022, 15(6): 1455-1467. doi: 10.3934/dcdss.2022031

Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping

1. 

School of Mathematics, Tianjin University, Tianjin 300354, China

2. 

Department of Mathematics and Statistics, University of Minnesota, Duluth, MN 55812-3000, USA

3. 

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 102488, China

*Corresponding author: Zhuangyi Liu

Received  March 2021 Revised  November 2021 Published  June 2022 Early access  February 2022

Fund Project: The first author is supported by the Natural Science Foundation of China grant NSFC-62073236

This paper is on the asymptotic behavior of the elastic string equation with localized Kelvin-Voigt damping
$ u_{tt}(x, t)-[u_{x}(x, t)+b(x)u_{x, t}(x, t)]_{x} = 0, \; x\in(-1, 1), \; t>0, $
where
$ b(x) = 0 $
on
$ x\in (-1, 0] $
, and
$ b(x) = a(x)>0 $
on
$ x\in (0, 1) $
. It is known that the Geometric Optics Condition for exponential stability does not apply to Kelvin-Voigt damping. Under the assumption that
$ a'(x) $
has a singularity at
$ x = 0 $
, we investigate the decay rate of the solution which depends on the order of the singularity.
When
$ a(x) $
behaves like
$ x^{\alpha}(-\log x)^{-\beta} $
near
$ x = 0 $
for
$ 0\le{\alpha}<1, \;0\le\beta $
or
$ 0<{\alpha}<1, \;\beta<0 $
, we show that the system can achieve a mixed polynomial-logarithmic decay rate.
As a byproduct, when
$ \beta = 0 $
, we obtain the decay rate
$ t^{-\frac{ 3-\alpha-\varepsilon}{2(1-{\alpha})}} $
of solution for arbitrarily small
$ \varepsilon>0 $
, which improves the rate
$ t^{-\frac{1}{1-{\alpha}}} $
obtained in [14]. The new rate is again consistent with the exponential decay rate in the limit case
$ \alpha\to 1^- $
. This is a step toward the goal of obtaining the optimal decay rate eventually.
Citation: Zhong-Jie Han, Zhuangyi Liu, Jing Wang. Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1455-1467. doi: 10.3934/dcdss.2022031
References:
[1]

M. AlvesJ. M. RiveraM. SepúlvedaO. V. Villagrán and M. Z. Garay, The asymptotic behavior of the linear transmission problem in viscoelasticity, Math. Nachr., 287 (2014), 483-497.  doi: 10.1002/mana.201200319.

[2]

C. J. K. BattyR. Chill and Y. Tomilov, Fine scales of decay of operator semigroups, J. Eur. Math. Soc., 18 (2016), 853-929.  doi: 10.4171/JEMS/605.

[3]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780.  doi: 10.1007/s00028-008-0424-1.

[4]

E. N. Batuev and V. D. Stepanov, Weighted inequalities of Hardy type, Siberian Math. J., 30 (1989), 8-16.  doi: 10.1007/BF01054210.

[5]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.  doi: 10.1007/s00208-009-0439-0.

[6]

S. ChenK. Liu and Z. Liu, Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping, SIAM J. Appl. Math., 59 (1999), 651-668.  doi: 10.1137/S0036139996292015.

[7]

B. Z. GuoJ. M. Wang and G. D. Zhang, Spectral analysis of a wave equation with Kelvin-Voigt damping, Z. Angew. Math. Mech., 90 (2010), 323-342.  doi: 10.1002/zamm.200900275.

[8]

J. Hao and Z. Liu, Stability of an abstract system of coupled hyperbolic and parabolic equations, Z. Angew. Math. Phys., 64 (2013), 1145-1159.  doi: 10.1007/s00033-012-0274-0.

[9]

F. Huang, On the mathematical model for linear elastic systems with analytic damping, SIAM J. Control Optim., 26 (1988), 714-724.  doi: 10.1137/0326041.

[10]

K. Liu and Z. Liu, Exponential decay of the energy of the Euler Bernoulli beam with locally distributed Kelvin-Voigt damping, SIAM J. Control Optim., 36 (1998), 1086-1098.  doi: 10.1137/S0363012996310703.

[11]

K. Liu and Z. Liu, Exponential decay of energy of vibrating strings with local viscoelasticity, Z. Angew. Math. Phys., 53 (2002), 265-280.  doi: 10.1007/s00033-002-8155-6.

[12]

K. LiuZ. Liu and Q. Zhang, Eventual differentiability of a string with local Kelvin-Voigt damping, ESAIM Control Optim. Calc. Var., 23 (2017), 443-454.  doi: 10.1051/cocv/2015055.

[13]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equations, Z. Angew. Math. Phys., 56 (2005), 630-644.  doi: 10.1007/s00033-004-3073-4.

[14]

Z. Liu and Q. Zhang, Stability of a string with Local Kelvin–Voigt damping and nonsmooth coefficient at interface, SIAM J. Control and Optim., 54 (2016), 1859-1871.  doi: 10.1137/15M1049385.

[15]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-1-4612-5561-1.

[16]

M. Renardy, On localized Kelvin-Voigt damping, Z. Angew. Math. Mech., 84 (2004), 280-283.  doi: 10.1002/zamm.200310100.

[17]

J. RozendaalD. Seifert and R. Stahn, Optimal rates of decay for operators semigroups on Hilbert spaces, Adv. Math., 346 (2019), 359-388.  doi: 10.1016/j.aim.2019.02.007.

[18]

G. Q. Xu and N. E. Mastorakis, Spectrum of an operator arising elastic system with local K-V damping, Z. Angew. Math. Mech., 88 (2008), 483-496.  doi: 10.1002/zamm.200700109.

show all references

References:
[1]

M. AlvesJ. M. RiveraM. SepúlvedaO. V. Villagrán and M. Z. Garay, The asymptotic behavior of the linear transmission problem in viscoelasticity, Math. Nachr., 287 (2014), 483-497.  doi: 10.1002/mana.201200319.

[2]

C. J. K. BattyR. Chill and Y. Tomilov, Fine scales of decay of operator semigroups, J. Eur. Math. Soc., 18 (2016), 853-929.  doi: 10.4171/JEMS/605.

[3]

C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780.  doi: 10.1007/s00028-008-0424-1.

[4]

E. N. Batuev and V. D. Stepanov, Weighted inequalities of Hardy type, Siberian Math. J., 30 (1989), 8-16.  doi: 10.1007/BF01054210.

[5]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.  doi: 10.1007/s00208-009-0439-0.

[6]

S. ChenK. Liu and Z. Liu, Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping, SIAM J. Appl. Math., 59 (1999), 651-668.  doi: 10.1137/S0036139996292015.

[7]

B. Z. GuoJ. M. Wang and G. D. Zhang, Spectral analysis of a wave equation with Kelvin-Voigt damping, Z. Angew. Math. Mech., 90 (2010), 323-342.  doi: 10.1002/zamm.200900275.

[8]

J. Hao and Z. Liu, Stability of an abstract system of coupled hyperbolic and parabolic equations, Z. Angew. Math. Phys., 64 (2013), 1145-1159.  doi: 10.1007/s00033-012-0274-0.

[9]

F. Huang, On the mathematical model for linear elastic systems with analytic damping, SIAM J. Control Optim., 26 (1988), 714-724.  doi: 10.1137/0326041.

[10]

K. Liu and Z. Liu, Exponential decay of the energy of the Euler Bernoulli beam with locally distributed Kelvin-Voigt damping, SIAM J. Control Optim., 36 (1998), 1086-1098.  doi: 10.1137/S0363012996310703.

[11]

K. Liu and Z. Liu, Exponential decay of energy of vibrating strings with local viscoelasticity, Z. Angew. Math. Phys., 53 (2002), 265-280.  doi: 10.1007/s00033-002-8155-6.

[12]

K. LiuZ. Liu and Q. Zhang, Eventual differentiability of a string with local Kelvin-Voigt damping, ESAIM Control Optim. Calc. Var., 23 (2017), 443-454.  doi: 10.1051/cocv/2015055.

[13]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equations, Z. Angew. Math. Phys., 56 (2005), 630-644.  doi: 10.1007/s00033-004-3073-4.

[14]

Z. Liu and Q. Zhang, Stability of a string with Local Kelvin–Voigt damping and nonsmooth coefficient at interface, SIAM J. Control and Optim., 54 (2016), 1859-1871.  doi: 10.1137/15M1049385.

[15]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-1-4612-5561-1.

[16]

M. Renardy, On localized Kelvin-Voigt damping, Z. Angew. Math. Mech., 84 (2004), 280-283.  doi: 10.1002/zamm.200310100.

[17]

J. RozendaalD. Seifert and R. Stahn, Optimal rates of decay for operators semigroups on Hilbert spaces, Adv. Math., 346 (2019), 359-388.  doi: 10.1016/j.aim.2019.02.007.

[18]

G. Q. Xu and N. E. Mastorakis, Spectrum of an operator arising elastic system with local K-V damping, Z. Angew. Math. Mech., 88 (2008), 483-496.  doi: 10.1002/zamm.200700109.

[1]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[2]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[3]

Louis Tebou. Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7117-7136. doi: 10.3934/dcds.2016110

[4]

Ahmed Bchatnia, Nadia Souayeh. Eventual differentiability of coupled wave equations with local Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1317-1338. doi: 10.3934/dcdss.2022098

[5]

Mohammad Akil, Ibtissam Issa, Ali Wehbe. Energy decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021059

[6]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control and Related Fields, 2021, 11 (4) : 885-904. doi: 10.3934/mcrf.2020050

[7]

Yu-Xia Liang, Ze-Hua Zhou. Supercyclic translation $C_0$-semigroup on complex sectors. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 361-370. doi: 10.3934/dcds.2016.36.361

[8]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control and Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[9]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[10]

Miroslav Bulíček, Josef Málek, K. R. Rajagopal. On Kelvin-Voigt model and its generalizations. Evolution Equations and Control Theory, 2012, 1 (1) : 17-42. doi: 10.3934/eect.2012.1.17

[11]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[12]

Jiří Neustupa. On $L^2$-Boundedness of a $C_0$-Semigroup generated by the perturbed oseen-type operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758-767. doi: 10.3934/proc.2007.2007.758

[13]

Jacek Banasiak, Marcin Moszyński. Hypercyclicity and chaoticity spaces of $C_0$ semigroups. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 577-587. doi: 10.3934/dcds.2008.20.577

[14]

Mikhail Turbin, Anastasiia Ustiuzhaninova. Pullback attractors for weak solution to modified Kelvin-Voigt model. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022011

[15]

José A. Conejero, Alfredo Peris. Hypercyclic translation $C_0$-semigroups on complex sectors. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1195-1208. doi: 10.3934/dcds.2009.25.1195

[16]

Aníbal Rodríguez-Bernal, Enrique Zuazua. Parabolic singular limit of a wave equation with localized boundary damping. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 303-346. doi: 10.3934/dcds.1995.1.303

[17]

Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247

[18]

Manil T. Mohan. On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. Evolution Equations and Control Theory, 2020, 9 (2) : 301-339. doi: 10.3934/eect.2020007

[19]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations and Control Theory, 2022, 11 (1) : 125-167. doi: 10.3934/eect.2020105

[20]

Menglan Liao. The lifespan of solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity. Evolution Equations and Control Theory, 2022, 11 (3) : 781-792. doi: 10.3934/eect.2021025

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (175)
  • HTML views (111)
  • Cited by (0)

Other articles
by authors

[Back to Top]