• Previous Article
    $ \Sigma $-shaped bifurcation curves for classes of elliptic systems
  • DCDS-S Home
  • This Issue
  • Next Article
    Qualitative and quantitative analysis of a nonlinear second-order anisotropic reaction-diffusion model of an epidemic infection spread
doi: 10.3934/dcdss.2022035
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Undulated bilayer interfaces in the planar functionalized Cahn-Hilliard equation

1. 

Department of Mathematics, Michigan State University, 619 Red Cedar Road, East Lansing, MI 48824, USA

2. 

Department of Mathematics, Ohio University, Morton Hall 321, 1 Ohio University, Athens OH 45701, USA

* Corresponding author: Qiliang Wu

Received  April 2021 Revised  January 2022 Early access February 2022

Fund Project: K. Promislow acknowledges support from NSF-DMS grant 1813203. Q. Wu acknowledges support from NSF-DMS grant 1815079

Experiments with diblock co-polymer melts display undulated bilayers that emanate from defects such as triple junctions and endcaps, [8]. Undulated bilayers are characterized by oscillatory perturbations of the bilayer width, which decay on a spatial length scale that is long compared to the bilayer width. We mimic defects within the functionalized Cahn-Hillard free energy by introducing spatially localized inhomogeneities within its parameters. For length parameter $ \varepsilon\ll1 $, we show that this induces undulated bilayer solutions whose width perturbations decay on an $ O\!\left( \varepsilon^{-1/2}\right) $ inner length scale that is long in comparison to the $ O(1) $ scale that characterizes the bilayer width.

Citation: Keith Promislow, Qiliang Wu. Undulated bilayer interfaces in the planar functionalized Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2022035
References:
[1]

R. Choksi, Partial Differential Equations: A First Course, American Mathematical Society, Providence, RI, 2021.

[2]

A. Christlieb, N. Kraitzman and K. Promislow, Competition and complexity in amphiphilic polymer morphology, Phys. D, 400 (2019), 132144, 20 pp. doi: 10.1016/j.physd.2019.06.010.

[3]

A. DoelmanG. HayrapetyanK. Promislow and B. Wetton, Meander and pearling of single-curvature bilayer interfaces in the functionalized Cahn–Hilliard equation, SIAM J. Math. Anal., 46 (2014), 3640-3677.  doi: 10.1137/13092705X.

[4]

G. Faye and A. Scheel, Center manifolds without a phase space, Trans. Amer. Math. Soc., 370 (2018), 5843-5885. 

[5]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphiphilic systems, Phys. Rev. Lett., 65 (1990), 1116-1119. 

[6]

D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981.

[7]

S. Jain and F. Bates, On the origins of morphological complexity in block copolymer surfactants, Science, 300 (2003), 460-464. 

[8]

S. Jain and F. Bates, Consequences of nonergodicity in aqueous binary PEO-PB micellar dispersions, Macromolecules, 37 (2004), 1511-1523. 

[9]

A. Kelley, The stable, center-stable, center, center-unstable, unstable manifolds, J. Differential Equations, 3 (1967), 546-570. 

[10]

M. Matsen and M. Schick, Stable and unstable phases of a diblock copolymer melt, Phys. Rev. Lett., 72 (1994), 2660-2663. 

[11]

V. Pliss, A reduction principle in the theory of stability of motion, Izv. Akad. Nauk SSSR Ser. Mat., 28 (1964), 1297–1324 (Russian).

[12]

K. Promislow and B. Wetton, PEM fuel cells: A mathematical overview, SIAM J. Appl. Math., 70 (2009), 369-409.  doi: 10.1137/080720802.

[13]

K. Promislow and Q. Wu, Existence of pearled patterns in the planar functionalized Cahn-Hilliard equation, J. Differential Equations, 259 (2015), 3298-3343.  doi: 10.1016/j.jde.2015.04.022.

[14]

K. Promislow and L. Yang, Existence of compressible bilayers in the functionalized Cahn–Hilliard equation, SIAM J. Appl. Dyn. Syst., 13 (2014), 629-657.  doi: 10.1137/130931060.

[15]

M. Teubner and R. Strey, Origin of scattering peaks in microemulsions, J. Chem. Phys., 87 (1987), 3195-3200. 

[16]

M. Teubner and R. Strey, Fluctuating interfaces in microemulsions and sponge phases, Phys. Rev. E, 50 (1994), 1325-1335. 

[17]

A. Vanderbauwhede and G. Iooss, Center Manifold Theory in Infinite Dimensions, Dynamics Reported: Expositions in dynamical Systems, Dynam. Report. Expositions Dynam. Systems (N.S.), vol. 1, Springer, Berlin, 1992,125–163.,

show all references

References:
[1]

R. Choksi, Partial Differential Equations: A First Course, American Mathematical Society, Providence, RI, 2021.

[2]

A. Christlieb, N. Kraitzman and K. Promislow, Competition and complexity in amphiphilic polymer morphology, Phys. D, 400 (2019), 132144, 20 pp. doi: 10.1016/j.physd.2019.06.010.

[3]

A. DoelmanG. HayrapetyanK. Promislow and B. Wetton, Meander and pearling of single-curvature bilayer interfaces in the functionalized Cahn–Hilliard equation, SIAM J. Math. Anal., 46 (2014), 3640-3677.  doi: 10.1137/13092705X.

[4]

G. Faye and A. Scheel, Center manifolds without a phase space, Trans. Amer. Math. Soc., 370 (2018), 5843-5885. 

[5]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphiphilic systems, Phys. Rev. Lett., 65 (1990), 1116-1119. 

[6]

D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981.

[7]

S. Jain and F. Bates, On the origins of morphological complexity in block copolymer surfactants, Science, 300 (2003), 460-464. 

[8]

S. Jain and F. Bates, Consequences of nonergodicity in aqueous binary PEO-PB micellar dispersions, Macromolecules, 37 (2004), 1511-1523. 

[9]

A. Kelley, The stable, center-stable, center, center-unstable, unstable manifolds, J. Differential Equations, 3 (1967), 546-570. 

[10]

M. Matsen and M. Schick, Stable and unstable phases of a diblock copolymer melt, Phys. Rev. Lett., 72 (1994), 2660-2663. 

[11]

V. Pliss, A reduction principle in the theory of stability of motion, Izv. Akad. Nauk SSSR Ser. Mat., 28 (1964), 1297–1324 (Russian).

[12]

K. Promislow and B. Wetton, PEM fuel cells: A mathematical overview, SIAM J. Appl. Math., 70 (2009), 369-409.  doi: 10.1137/080720802.

[13]

K. Promislow and Q. Wu, Existence of pearled patterns in the planar functionalized Cahn-Hilliard equation, J. Differential Equations, 259 (2015), 3298-3343.  doi: 10.1016/j.jde.2015.04.022.

[14]

K. Promislow and L. Yang, Existence of compressible bilayers in the functionalized Cahn–Hilliard equation, SIAM J. Appl. Dyn. Syst., 13 (2014), 629-657.  doi: 10.1137/130931060.

[15]

M. Teubner and R. Strey, Origin of scattering peaks in microemulsions, J. Chem. Phys., 87 (1987), 3195-3200. 

[16]

M. Teubner and R. Strey, Fluctuating interfaces in microemulsions and sponge phases, Phys. Rev. E, 50 (1994), 1325-1335. 

[17]

A. Vanderbauwhede and G. Iooss, Center Manifold Theory in Infinite Dimensions, Dynamics Reported: Expositions in dynamical Systems, Dynam. Report. Expositions Dynam. Systems (N.S.), vol. 1, Springer, Berlin, 1992,125–163.,

Figure 1.  Cryo-TEM images of blends of amphiphilic diblock polymer in water. A mixture of diblocks with hydrophobic/hydrophillic chain lengths of 170/110 and 46/58, respectively. This mixture produces visible undulations behind the endcaps, see the red boxes outlining the structures labeled '2' and '3'. Reprinted with permission from Figures 7 & 8 of [8]
Figure 2.  The operator $ \mathbb{L}( \varepsilon) $ admits two purely imaginary eigenvalues (blue crosses) with algebraic multiplicity 2 when $ \varepsilon = 0. $ Given $ \varepsilon>0 $, for $ \alpha_0>0 $ they remain purely imaginary while for $ \alpha_0<0 $ they split into four geometrically simple modes (red crosses)
[1]

Kelong Cheng, Cheng Wang, Steven M. Wise, Zixia Yuan. Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2211-2229. doi: 10.3934/dcdss.2020186

[2]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[3]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145

[4]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[5]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[6]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[7]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[8]

Quan Wang, Dongming Yan. On the stability and transition of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2607-2620. doi: 10.3934/dcdsb.2020024

[9]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[10]

Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127

[11]

Alain Miranville, Ramon Quintanilla, Wafa Saoud. Asymptotic behavior of a Cahn-Hilliard/Allen-Cahn system with temperature. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2257-2288. doi: 10.3934/cpaa.2020099

[12]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[13]

Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669

[14]

Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308

[15]

Elena Bonetti, Pierluigi Colli, Luca Scarpa, Giuseppe Tomassetti. A doubly nonlinear Cahn-Hilliard system with nonlinear viscosity. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1001-1022. doi: 10.3934/cpaa.2018049

[16]

Dirk Blömker, Bernhard Gawron, Thomas Wanner. Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 25-52. doi: 10.3934/dcds.2010.27.25

[17]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[18]

Pierluigi Colli, Gianni Gilardi, Paolo Podio-Guidugli, Jürgen Sprekels. An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 353-368. doi: 10.3934/dcdss.2013.6.353

[19]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[20]

Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (151)
  • HTML views (109)
  • Cited by (0)

Other articles
by authors

[Back to Top]