\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Undulated bilayer interfaces in the planar functionalized Cahn-Hilliard equation

  • * Corresponding author: Qiliang Wu

    * Corresponding author: Qiliang Wu

K. Promislow acknowledges support from NSF-DMS grant 1813203. Q. Wu acknowledges support from NSF-DMS grant 1815079.

Abstract / Introduction Full Text(HTML) Figure(2) Related Papers Cited by
  • Experiments with diblock co-polymer melts display undulated bilayers that emanate from defects such as triple junctions and endcaps, [8]. Undulated bilayers are characterized by oscillatory perturbations of the bilayer width, which decay on a spatial length scale that is long compared to the bilayer width. We mimic defects within the functionalized Cahn-Hillard free energy by introducing spatially localized inhomogeneities within its parameters. For length parameter $  \varepsilon\ll1 $, we show that this induces undulated bilayer solutions whose width perturbations decay on an $ O\!\left( \varepsilon^{-1/2}\right) $ inner length scale that is long in comparison to the $ O(1) $ scale that characterizes the bilayer width.

    Mathematics Subject Classification: Primary: 35B36, 35Q92, 37L10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Cryo-TEM images of blends of amphiphilic diblock polymer in water. A mixture of diblocks with hydrophobic/hydrophillic chain lengths of 170/110 and 46/58, respectively. This mixture produces visible undulations behind the endcaps, see the red boxes outlining the structures labeled '2' and '3'. Reprinted with permission from Figures 7 & 8 of [8]

    Figure 2.  The operator $ \mathbb{L}( \varepsilon) $ admits two purely imaginary eigenvalues (blue crosses) with algebraic multiplicity 2 when $ \varepsilon = 0. $ Given $ \varepsilon>0 $, for $ \alpha_0>0 $ they remain purely imaginary while for $ \alpha_0<0 $ they split into four geometrically simple modes (red crosses)

  • [1] R. Choksi, Partial Differential Equations: A First Course, American Mathematical Society, Providence, RI, 2021.
    [2] A. Christlieb, N. Kraitzman and K. Promislow, Competition and complexity in amphiphilic polymer morphology, Phys. D, 400 (2019), 132144, 20 pp. doi: 10.1016/j.physd.2019.06.010.
    [3] A. DoelmanG. HayrapetyanK. Promislow and B. Wetton, Meander and pearling of single-curvature bilayer interfaces in the functionalized Cahn–Hilliard equation, SIAM J. Math. Anal., 46 (2014), 3640-3677.  doi: 10.1137/13092705X.
    [4] G. Faye and A. Scheel, Center manifolds without a phase space, Trans. Amer. Math. Soc., 370 (2018), 5843-5885. 
    [5] G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphiphilic systems, Phys. Rev. Lett., 65 (1990), 1116-1119. 
    [6] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981.
    [7] S. Jain and F. Bates, On the origins of morphological complexity in block copolymer surfactants, Science, 300 (2003), 460-464. 
    [8] S. Jain and F. Bates, Consequences of nonergodicity in aqueous binary PEO-PB micellar dispersions, Macromolecules, 37 (2004), 1511-1523. 
    [9] A. Kelley, The stable, center-stable, center, center-unstable, unstable manifolds, J. Differential Equations, 3 (1967), 546-570. 
    [10] M. Matsen and M. Schick, Stable and unstable phases of a diblock copolymer melt, Phys. Rev. Lett., 72 (1994), 2660-2663. 
    [11] V. Pliss, A reduction principle in the theory of stability of motion, Izv. Akad. Nauk SSSR Ser. Mat., 28 (1964), 1297–1324 (Russian).
    [12] K. Promislow and B. Wetton, PEM fuel cells: A mathematical overview, SIAM J. Appl. Math., 70 (2009), 369-409.  doi: 10.1137/080720802.
    [13] K. Promislow and Q. Wu, Existence of pearled patterns in the planar functionalized Cahn-Hilliard equation, J. Differential Equations, 259 (2015), 3298-3343.  doi: 10.1016/j.jde.2015.04.022.
    [14] K. Promislow and L. Yang, Existence of compressible bilayers in the functionalized Cahn–Hilliard equation, SIAM J. Appl. Dyn. Syst., 13 (2014), 629-657.  doi: 10.1137/130931060.
    [15] M. Teubner and R. Strey, Origin of scattering peaks in microemulsions, J. Chem. Phys., 87 (1987), 3195-3200. 
    [16] M. Teubner and R. Strey, Fluctuating interfaces in microemulsions and sponge phases, Phys. Rev. E, 50 (1994), 1325-1335. 
    [17] A. Vanderbauwhede and G. Iooss, Center Manifold Theory in Infinite Dimensions, Dynamics Reported: Expositions in dynamical Systems, Dynam. Report. Expositions Dynam. Systems (N.S.), vol. 1, Springer, Berlin, 1992,125–163.,
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(2290) PDF downloads(206) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return