[1]
|
S. Allen, C. Ferro and F. Kwasniok, Recalibrating wind-speed forecasts using regime-dependent ensemble model output statistics, Quarterly Journal of the Royal Meteorological Society, 146 (2020), 2576-2596.
doi: 10.1002/qj.3806.
|
[2]
|
S. Allen, C. Ferro and F. Kwasniok, Regime-dependent statistical post-processing of ensemble forecasts, Quarterly Journal of the Royal Meteorological Society, 145 (2019), 3535-3552.
doi: 10.1002/qj.3638.
|
[3]
|
J. L. Anderson, A method for producing and evaluating probabilistic forecasts from ensemble model integrations, Journal of Climate, 9 (1996), 1518-1530.
doi: 10.1175/1520-0442(1996)009<1518:AMFPAE>2.0.CO;2.
|
[4]
|
D. Arthur and S. Vassilvitskii, k-means++: The advantages of careful seeding, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1027–1035, ACM, New York, 2007.
|
[5]
|
J.-P. Baudry and G. Celeux, EM for mixtures, Statistics and Computing, 25 (2015), 713-726.
doi: 10.1007/s11222-015-9561-x.
|
[6]
|
J. Bessac, P. Ailliot, J. Cattiaux and V. Monbet, Comparison of hidden and observed regime-switching autoregressive models for (u, v)-components of wind fields in the northeastern atlantic, Advances in Statistical Climatology, Meteorology and Oceanography, 2 (2016), 1-16.
|
[7]
|
C. Biernacki, G. Celeux and G. Govaert, Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models, Comput. Statist. Data Anal., 41 (2003), 561-575.
doi: 10.1016/S0167-9473(02)00163-9.
|
[8]
|
P. Bougeault, Z. Toth, C. Bishop, B. Brown, D. Burridge, D. H. Chen, B. Ebert, M. Fuentes, T. M. Hamill and K. Mylne, et al., The thorpex interactive grand global ensemble, Bulletin of the American Meteorological Society, 91 (2010), 1059-1072.
doi: 10.1175/2010BAMS2853.1.
|
[9]
|
J. B. Bremnes, Ensemble postprocessing using quantile function regression based on neural networks and bernstein polynomials, Monthly Weather Review, 148 (2020), 403-414.
doi: 10.1175/MWR-D-19-0227.1.
|
[10]
|
R. Buizza, Weather prediction in a world of uncertainties: Should ensembles simulate the effect of model approximations?, in ECMWF/WWRP Workshop: Model Uncertainty, ECMWF, Reading, 2016.
|
[11]
|
R. Buizza, M. Leutbecher and L. Isaksen, Potential use of an ensemble of analyses in the ECMWF ensemble prediction system, Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 134 (2008), 2051-2066.
doi: 10.1002/qj.346.
|
[12]
|
R. Buizza, M. Milleer and T. N. Palmer, Stochastic representation of model uncertainties in the ECMWF ensemble prediction system, Quarterly Journal of the Royal Meteorological Society, 125 (1999), 2887-2908.
doi: 10.1002/qj.49712556006.
|
[13]
|
M. Courbariaux, P. Barbillon, L. Perreault and É. Parent, Post-processing multiensemble temperature and precipitation forecasts through an exchangeable normal-gamma model and its Tobit extension, J. Agric. Biol. Environ. Stat., 24 (2019), 309-345.
doi: 10.1007/s13253-019-00358-2.
|
[14]
|
A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. Ser. B, 39 (1977), 1-22.
doi: 10.1111/j.2517-6161.1977.tb01600.x.
|
[15]
|
P. Diaconis and D. Freedman, Finite exchangeable sequences, Ann. Probab., 8 (1980), 745-764.
|
[16]
|
C. Fraley, Algorithms for model-based Gaussian hierarchical clustering, SIAM J. Sci. Comput., 20 (1998), 270-281.
doi: 10.1137/S1064827596311451.
|
[17]
|
C. Fraley, A. E. Raftery and T. Gneiting, Calibrating multimodel forecast ensembles with exchangeable and missing members using bayesian model averaging, Monthly Weather Review, 138 (2010), 190-202.
doi: 10.1175/2009MWR3046.1.
|
[18]
|
H. R. Glahn and D. A. Lowry, The use of model output statistics (MOS) in objective weather forecasting, Journal of Applied Meteorology and Climatology, 11 (1972), 1203-1211.
doi: 10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.
|
[19]
|
T. Gneiting and A. E. Raftery, Strictly proper scoring rules, prediction, and estimation, Journal of the American Statistical Association, 102 (2007), 359-378.
|
[20]
|
T. Gneiting, A. E. Raftery, A. H. Westveld Ⅲ and T. Goldman, Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, 133 (2005), 1098-1118.
doi: 10.1175/MWR2904.1.
|
[21]
|
T. M. Hamill and S. J. Colucci, Verification of Eta–RSM short-range ensemble forecasts, Monthly Weather Review, 125 (1997), 1312-1327.
doi: 10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2.
|
[22]
|
H. Hersbach, Decomposition of the continuous ranked probability score for ensemble prediction systems, Weather and Forecasting, 15 (2000), 559-570.
doi: 10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.
|
[23]
|
W. H. Klein, B. M. Lewis and I. Enger, Objective prediction of five-day mean temperatures during winter, Journal of Atmospheric Sciences, 16 (1959), 672-682.
doi: 10.1175/1520-0469(1959)016<0672:OPOFDM>2.0.CO;2.
|
[24]
|
J. E. Matheson and R. L. Winkler, Scoring rules for continuous probability distributions, Management Science, 22 (1976), 1087-1096.
doi: 10.1287/mnsc.22.10.1087.
|
[25]
|
G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions, vol. 382, John Wiley & Sons, 2007.
|
[26]
|
G. J. McLachlan and D. Peel, Finite Mixture Models, John Wiley & Sons, 2004.
|
[27]
|
Y.-Y. Park, R. Buizza and M. Leutbecher, TIGGE: Preliminary results on comparing and combining ensembles, Quarterly Journal of the Royal Meteorological Society, 134 (2008), 2029-2050.
doi: 10.1002/qj.334.
|
[28]
|
G. Schwarz, Estimating the dimension of a model, The Annals of Statistics, 6 (1978), 461-464.
|
[29]
|
D. J. Stensrud, J.-W. Bao and T. T. Warner, Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems, Monthly Weather Review, 128 (2000), 2077-2107.
doi: 10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.
|
[30]
|
M. Taillardat, O. Mestre, M. Zamo and P. Naveau, Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics, Monthly Weather Review, 144 (2016), 2375-2393.
doi: 10.1175/MWR-D-15-0260.1.
|
[31]
|
O. Talagrand, Evaluation of probabilistic prediction systems, in Workshop Proceedings "Workshop on Predictability", 20-22 October 1997, ECMWF, Reading, UK, 1999.
|
[32]
|
S. Vannitsem, J. B. Bremnes, J. Demaeyer, G. R. Evans, J. Flowerdew, S. Hemri, S. Lerch, N. Roberts, S. Theis and A. Atencia, et al., Statistical postprocessing for weather forecasts: Review, challenges, and avenues in a big data world, Bulletin of the American Meteorological Society, 102 (2021), E681-E699.
doi: 10.1175/BAMS-D-19-0308.1.
|
[33]
|
D. S. Wilks, Effects of stochastic parametrizations in the Lorenz'96 system, Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 131 (2005), 389-407.
doi: 10.1256/qj.04.03.
|
[34]
|
D. S. Wilks, Univariate ensemble postprocessing, in Statistical Postprocessing of Ensemble Forecasts, Elsevier, (2018), 49–89.
doi: 10.1016/B978-0-12-812372-0.00003-0.
|