In this paper we investigate some qualitative properties of the solutions to the following doubly nonlocal equation
$ \begin{equation} \label{eq_abstract} (- \Delta)^s u + \mu u = (I_\alpha*F(u))F'(u) \quad \text{in } \mathbb{R}^N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{(P)}\end{equation} $
where $ N \geq 2 $, $ s\in (0, 1) $, $ \alpha \in (0, N) $, $ \mu>0 $ is fixed, $ (-\Delta)^s $ denotes the fractional Laplacian and $ I_{\alpha} $ is the Riesz potential. Here $ F \in C^1(\mathbb{R}) $ stands for a general nonlinearity of Berestycki-Lions type. We obtain first some regularity result for the solutions of (P). Then, by assuming $ F $ odd or even and positive on the half-line, we get constant sign and radial symmetry of the Pohozaev ground state solutions related to equation (P). In particular, we extend some results contained in [
Citation: |
[1] | C. Argaez and M. Melgaard, Solutions to quasi-relativistic multi-configurative Hartree-Fock equations in quantum chemistry, Nonlinear Anal., 75 (2012), 384-404. doi: 10.1016/j.na.2011.08.038. |
[2] | T. Bartsch, Y. Liu and Z. Liu, Normalized solutions for a class of nonlinear Choquard equations, SN Partial Differ. Equ. Appl., 1 (2020), Paper No. 34, 25 pp. doi: 10.1007/s42985-020-00036-w. |
[3] | W. Beckner, Sobolev inequalities, the Poisson semigroup, and analysis on the sphere $S^n$, Proc. Natl. Acad. Sci. USA, 89 (1992), 4816-4819. doi: 10.1073/pnas.89.11.4816. |
[4] | J. Benedikt, V. Bobkov, R. N. Dhara and P. Girg, Nonradiality of second eigenfunctions of the fractional Laplacian in a ball, arXiv: 2102.08298, (2021), pp. 13. |
[5] | H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555. |
[6] | J. Byeon, O. Kwon and J. Seok, Nonlinear scalar field equations involving the fractional Laplacian, Nonlinearity, 30 (2017), 1659-1681. doi: 10.1088/1361-6544/aa60b4. |
[7] | X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53. doi: 10.1016/j.anihpc.2013.02.001. |
[8] | Y.-H. Chen and C. Liu, Ground state solutions for non-autonomous fractional Choquard equations, Nonlinearity, 29 (2016), 1827-1842. doi: 10.1088/0951-7715/29/6/1827. |
[9] | Y. Cho, M. M. Fall, H. Hajaiej, P.A. Markowich and S. Trabelsi, Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity, Anal. Appl. (Singap.), 15 (2017), 699-729. doi: 10.1142/S0219530516500056. |
[10] | Y. Cho, H. Hajaiej, G. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity, Funkcial. Ekvac., 56 (2013), 193-224. doi: 10.1619/fesi.56.193. |
[11] | S. Cingolani, M. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63 (2012), 233-248. doi: 10.1007/s00033-011-0166-8. |
[12] | S. Cingolani, M. Gallo and K. Tanaka, Normalized solutions for fractional nonlinear scalar field equation via Lagrangian formulation, Nonlinearity, 34 (2021), 4017-4056. doi: 10.1088/1361-6544/ac0166. |
[13] | S. Cingolani, M. Gallo and K. Tanaka, Symmetric ground states for doubly nonlocal equations with mass constraint, Symmetry, 13 (2021), article ID 1199, 1–17. doi: 10.3390/sym13071199. |
[14] | S. Cingolani, M. Gallo and K. Tanaka, Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities, Calc. Var. Partial Differential Equations, 61 (2022), Paper No. 68. doi: 10.1007/s00526-021-02182-4. |
[15] | S. Cingolani, M. Gallo and K. Tanaka, On fractional Schrödinger equations with Hartree type nonlinearities, Mathematics in Engineering, 4 (2022), 1-33. doi: 10.3934/mine.2022056. |
[16] | S. Cingolani and K. Tanaka, Ground state solutions for the nonlinear Choquard equation with prescribed mass, in Geometric Properties for Parabolic and Elliptic PDE's, Springer INdAM Series, 47 (2021), 23–41. doi: 10.1007/978-3-030-73363-6_2. |
[17] | S. Cingolani and K. Tanaka, Semi-classical states for the nonlinear Choquard equations: Existence, multiplicity and concentration at a potential well, Rev. Mat. Iberoam., 35 (2019), 1885-1924. doi: 10.4171/rmi/1105. |
[18] | M. Clapp and D. Salazar, Positive and sign changing solutions to a nonlinear Choquard equation, J. Math. Anal. Appl., 407 (2013), 1-15. doi: 10.1016/j.jmaa.2013.04.081. |
[19] | R. Clemente, J.C. de Albuquerque and E. Barboza, Existence of solutions for a fractional Choquard-type equation in $\mathbb{R}$ with critical exponential growth, Z. Angew. Math. Phys., 72 (2021), Paper No. 16, 13 pp. doi: 10.1007/s00033-020-01447-w. |
[20] | S. Coleman, V. Glaser and A. Martin, Action minima among solutions to a class of Euclidean scalar field equations, Commun. Math. Phys., 58 (1978), 211-221. doi: 10.1007/BF01609421. |
[21] | W. Dai, Y. Fang and G. Qin, Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes, J. Differential Equations, 265 (2018), 2044-2063. doi: 10.1016/j.jde.2018.04.026. |
[22] | A. Dall'Acqua, T. Østergaard Sørensen and E. Stockmeyer, Hartree-Fock theory for pseudorelativistic atoms, Ann. Henri Poincaré, 9 (2008), 711-742. doi: 10.1007/s00023-008-0370-z. |
[23] | P. d'Avenia, G. Siciliano and M. Squassina, On the fractional Choquard equations, Math. Models Methods Appl. Sci., 25 (2015), 1447-1476. doi: 10.1142/S0218202515500384. |
[24] | P. d'Avenia, G. Siciliano and M. Squassina, Existence results for a doubly nonlocal equation, São Paulo J. Math. Sci., 9 (2015), 311-324. doi: 10.1007/s40863-015-0023-3. |
[25] | F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Universitext, Springer-Verlag, London, 2012. doi: 10.1007/978-1-4471-2807-6. |
[26] | E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. |
[27] | L. Dong, D. Liu, W. Qi, L. Wang, H. Zhou, P. Peng and C. Huang, Necklace beams carrying fractional angular momentum in fractional systems with a saturable nonlinearity, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), article ID 105840, 8 pp. doi: 10.1016/j.cnsns.2021.105840. |
[28] | N. du Plessis, Some theorems about the Riesz fractional integral, Trans. Am. Math. Soc., 80 (1955), 124-134. doi: 10.1090/S0002-9947-1955-0086938-3. |
[29] | A. Elgart and B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math., 60 (2007), 500-545. doi: 10.1002/cpa.20134. |
[30] | P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equations with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262. doi: 10.1017/S0308210511000746. |
[31] | J. Fröhlich, B. L. G. Jonsson and E. Lenzmann, Boson stars as solitary waves, Comm. Math. Phys., 274 (2007), 1-30. doi: 10.1007/s00220-007-0272-9. |
[32] | J. Fröhlich and E. Lenzmann, Mean-field limit of quantum Bose gases and nonlinear Hartree equation, in Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau (2004), talk no. 18, 26 pp. |
[33] | J. Fröhlich, T.-P. Tsai and H.-T. Yau, On the point-particle (Newtonian) limit of the non-linear Hartree equation, Comm. Math. Phys., 225 (2002), 223-274. doi: 10.1007/s002200100579. |
[34] | J. Giacomoni, D. Goel and K. Sreenadh, Regularity results on a class of doubly nonlocal problems, J. Differential Equations, 268 (2020), 5301-5328. doi: 10.1016/j.jde.2019.11.009. |
[35] | Q. Guo and S. Zhu, Sharp threshold of blow-up and scattering for the fractional Hartree equation, J. Differential Equations, 264 (2018), 2802-2832. doi: 10.1016/j.jde.2017.11.001. |
[36] | C. Hainzl, E. Lenzmann, M. Lewin and B. Schlein, On blowup for time-dependent generalized Hartree-Fock equations, Ann. Henri Poincaré, 11 (2010), 1023-1052. doi: 10.1007/s00023-010-0054-3. |
[37] | H. Hajaiej, P. A. Markowich and S. Trabelsi, Multiconfiguration Hartree-Fock Theory for pseudorelativistic systems: The time-dependent case, Math. Models Methods Appl. Sci., 24 (2014), 599-626. doi: 10.1142/S0218202513500619. |
[38] | S. Herr and E. Lenzmann, The Boson star equation with initial data of low regularity, Nonlinear Anal., 97 (2014), 125-137. doi: 10.1016/j.na.2013.11.023. |
[39] | J. Hirata and K. Tanaka, Nonlinear scalar field equations with $L^2$ constraint: Mountain pass and symmetric mountain pass approaches, Adv. Nonlinear Stud., 19 (2019), 263-290. doi: 10.1515/ans-2018-2039. |
[40] | N. Ikoma and K. Tanaka, A note on deformation argument for $L^2$ constraint problems, Adv. Differential Equations, 24 (2019), 609-646. |
[41] | N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Rev. A, 268 (2000), 298-305. doi: 10.1016/S0375-9601(00)00201-2. |
[42] | E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom., 10 (2007), 43-64. doi: 10.1007/s11040-007-9020-9. |
[43] | E. Lenzmann, Uniqueness of ground states for pseudorelativistic Hartree equations, Anal. PDE, 2 (2009), 1-27. doi: 10.2140/apde.2009.2.1. |
[44] | E. Lenzmann and M. Lewin, On singularity formation for the $L^2$-critical Boson star equation, Nonlinearity, 24 (2011), 3515-3540. doi: 10.1088/0951-7715/24/12/009. |
[45] | E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1977), 93-105. doi: 10.1002/sapm197757293. |
[46] | E.H. Lieb and H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., 112 (1987), 147-174. doi: 10.1007/BF01217684. |
[47] | P.-L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., 49 (1982), 315-334. doi: 10.1016/0022-1236(82)90072-6. |
[48] | H. Luo, Ground state solutions of Pohozaev type for fractional Choquard equations with general nonlinearities, Comput. Math. Appl., 77 (2019), 877-887. doi: 10.1016/j.camwa.2018.10.024. |
[49] | L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467. doi: 10.1007/s00205-008-0208-3. |
[50] | I. M. Moroz, R. Penrose and P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity, 15 (1998), 2733-2742. doi: 10.1088/0264-9381/15/9/019. |
[51] | V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184. doi: 10.1016/j.jfa.2013.04.007. |
[52] | V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557-6579. doi: 10.1090/S0002-9947-2014-06289-2. |
[53] | V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813. doi: 10.1007/s11784-016-0373-1. |
[54] | S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. |
[55] | R. Penrose, On gravity's role in quantum state reduction, Gen. Rel. Grav., 28 (1996), 581-600. doi: 10.1007/BF02105068. |
[56] | R. Penrose, Quantum computation, entanglement and state reduction, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 356 (1998), 1927-1939. doi: 10.1098/rsta.1998.0256. |
[57] | R. Penrose, The Road to Reality. A Complete Guide to the Laws of the Universe, Alfred A. Knopf Inc., New York, 2005. |
[58] | Z. Shen, F. Gao and M. Yin, Ground state for nonlinear fractional Choquard equations with general nonlinearities, Math. Methods Appl. Sci., 39 (2016), 4082-4098. doi: 10.1002/mma.3849. |
[59] | L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153. |
[60] | C. A. Stuart, Existence theory for the Hartree equation, Arch. Ration. Mech. Anal., 51 (1973), 60-69. doi: 10.1007/BF00275993. |
[61] | K. P. Tod, The ground state energy of the Schrödinger-Newton equation, Phys. Lett. A, 280 (2001), 173-176. doi: 10.1016/S0375-9601(01)00059-7. |
[62] | P. Tod and I.M. Moroz, An analytical approach to the Schrödinger-Newton equations, Nonlinearity, 12 (1999), 201-216. doi: 10.1088/0951-7715/12/2/002. |
[63] | M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, 24, Birkäuser, 1996. doi: 10.1007/978-1-4612-4146-1. |