[1]
|
C. Andrieu, A. Doucet and R. Holenstein, Particle markov chain monte Carlo methods, J. R. Stat. Soc. Ser. B Stat. Methodol., 72 (2010), 269-342.
doi: 10.1111/j.1467-9868.2009.00736.x.
|
[2]
|
M. Aoki, State Space Modeling of Time Series, Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-96985-0.
|
[3]
|
D. Barber, A. T. Cemgil and S. Chiappa, Bayesian Time Series Models, Cambridge University Press, 2011.
doi: 10.1017/CBO9780511984679.
|
[4]
|
T. Berry and T. Sauer, Adaptive ensemble Kalman filtering of non-linear systems, Tellus A: Dynamic Meteorology and Oceanography, 65 (2013), 20331.
doi: 10.3402/tellusa.v65i0.20331.
|
[5]
|
M. Bocquet and P. Sakov, Joint state and parameter estimation with an iterative ensemble Kalman smoother, Nonlin. Processes Geophys., 20 (2013), 803-818.
doi: 10.5194/npg-20-803-2013.
|
[6]
|
M. Bocquet and P. Sakov, Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems, Nonlinear Processes in Geophysics, 19 (2012), 383-399.
doi: 10.5194/npg-19-383-2012.
|
[7]
|
M. Bocquet and P. Sakov, An iterative ensemble Kalman smoother, Quarterly Journal of the Royal Meteorological Society, 140 (2014), 1521-1535.
doi: 10.1002/qj.2236.
|
[8]
|
O. Cappé, S. J. Godsill and E. Moulines, An overview of existing methods and recent advances in sequential monte carlo, Proceedings of the IEEE, 95 (2007), 899-924.
|
[9]
|
A. Carrassi, M. Bocquet, L. Bertino and G. Evensen, Data assimilation in the geosciences: An overview of methods, issues, and perspectives, Wiley Interdisciplinary Reviews: Climate Change, 9 (2018), e535.
doi: 10.1002/wcc.535.
|
[10]
|
G. Celeux, D. Chauveau and J. Diebolt, On Stochastic Versions of the EM Algorithm, Research Report RR-2514, INRIA, 1995.
|
[11]
|
K. S. Chan and J. Ledolter, Monte Carlo EM estimation for time series models involving counts, J. Amer. Statist. Assoc., 90 (1995), 242-252.
doi: 10.1080/01621459.1995.10476508.
|
[12]
|
N. Chopin and S. S. Singh, On particle gibbs sampling, Bernoulli, 21 (2015), 1855-1883.
doi: 10.3150/14-BEJ629.
|
[13]
|
B. Delyon, M. Lavielle and E. Moulines, Convergence of a stochastic approximation version of the em algorithm, Ann. Statist., 27 (1999), 94-128.
doi: 10.1214/aos/1018031103.
|
[14]
|
A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. Ser. B, 39 (1977), 1-38.
doi: 10.1111/j.2517-6161.1977.tb01600.x.
|
[15]
|
R. Douc and O. Cappé, Comparison of resampling schemes for particle filtering, in ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, IEEE, 2005, 64-69.
doi: 10.1109/ISPA.2005.195385.
|
[16]
|
R. Douc, A. Garivier, E. Moulines and J. Olsson, On the forward filtering backward smoothing particle approximations of the smoothing distribution in general state spaces models, arXiv preprint, arXiv: 0904.0316.
|
[17]
|
A. Doucet, N. de Freitas and N. Gordon (eds.), Sequential Monte Carlo Methods in Practice, Statistics for Engineering and Information Science, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-3437-9_1.
|
[18]
|
A. Doucet, S. Godsill and C. Andrieu, On Sequential Monte Carlo Sampling Methods for Bayesian Filtering, 1998.
|
[19]
|
A. Doucet and A. M. Johansen, A tutorial on particle filtering and smoothing: Fifteen years later, The Oxford Handbook of Nonlinear filtering, 656–704, Oxford Univ. Press, Oxford, 2011.
|
[20]
|
D. Dreano, P. Tandeo, M. Pulido, B. Ait-El-Fquih, T. Chonavel and I. Hoteit, Estimating model-error covariances in nonlinear state-space models using kalman smoothing and the expectation-maximization algorithm, Quarterly Journal of the Royal Meteorological Society, 143 (2017), 1877-1885.
doi: 10.1002/qj.3048.
|
[21]
|
J. Durbin and S. J. Koopman, Time Series Analysis by State Space Methods, Oxford university press, 2012.
doi: 10.1093/acprof:oso/9780199641178.001.0001.
|
[22]
|
G. Evensen, The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dynamics, 53 (2003), 343-367.
doi: 10.1007/s10236-003-0036-9.
|
[23]
|
G. Evensen and P. J. van Leeuwen, An ensemble Kalman smoother for nonlinear dynamics, Monthly Weather Review, 128 (2000), 1852-1867.
doi: 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2.
|
[24]
|
S. J. Godsill, A. Doucet and M. West, Monte Carlo smoothing for nonlinear time series, J. Amer. Statist. Assoc., 99 (2004), 156-168.
doi: 10.1198/016214504000000151.
|
[25]
|
J. D. Hol, T. B. Schon and F. Gustafsson, On resampling algorithms for particle filters, in Nonlinear Statistical Signal Processing Workshop, 2006 IEEE, IEEE, 2006, 79-82.
doi: 10.1109/NSSPW.2006.4378824.
|
[26]
|
N. Kantas, A. Doucet, S. S. Singh, J. Maciejowski and N. Chopin, On particle methods for parameter estimation in state-space models, Statist. Sci., 30 (2015), 328-351.
doi: 10.1214/14-STS511.
|
[27]
|
G. Kitagawa, Monte Carlo filter and smoother for non-Gaussian nonlinear state space models, J. Comput. Graph. Statist., 5 (1996), 1-25.
doi: 10.2307/1390750.
|
[28]
|
J. Kokkala, A. Solin and S. Särkkä, Expectation maximization based parameter estimation by sigma-point and particle smoothing, in FUSION, IEEE, 2014, 1-8.
|
[29]
|
E. Kuhn and M. Lavielle, Coupling a stochastic approximation version of EM with an MCMC procedure, ESAIM Probab. Stat., 8 (2004), 115-131.
doi: 10.1051/ps:2004007.
|
[30]
|
F. Le Gland, V. Monbet and V.-D. Tran, Large sample asymptotics for the ensemble kalman filter, in Handbook on Nonlinear Filtering (eds. D. Crisan and B. Rozovskii), Oxford University Press, Oxford, 2011, chapter 22, 598–631.
|
[31]
|
R. Lguensat, P. Tandeo, P. Ailliot, M. Pulido and R. Fablet, The analog data assimilation, Monthly Weather Review, 145 (2017), 4093-4107.
doi: 10.1175/MWR-D-16-0441.1.
|
[32]
|
F. Lindsten, An efficient stochastic approximation EM algorithm using conditional particle filters, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2013, 6274-6278.
doi: 10.1109/ICASSP.2013.6638872.
|
[33]
|
F. Lindsten, Particle Filters and Markov Chains for Learning of Dynamical Systems, PhD thesis, Linköping University Electronic Press, 2013.
|
[34]
|
F. Lindsten, M. I. Jordan and T. B. Schön, Particle Gibbs with ancestor sampling, J. Mach. Learn. Res., 15 (2014), 2145-2184.
|
[35]
|
F. Lindsten and T. B. Schön, On the use of backward simulation in the particle Gibbs sampler, in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2012, 3845-3848.
doi: 10.1109/ICASSP.2012.6288756.
|
[36]
|
F. Lindsten, T. B. Schön, Backward simulation methods for monte Carlo statistical inference, Foundations and Trends® in Machine Learning, 6 (2013), 1-143.
doi: 10.1561/9781601986993.
|
[37]
|
F. Lindsten, T. Schön and M. I. Jordan, Ancestor sampling for particle Gibbs, in Advances in Neural Information Processing Systems, 2012, 2591-2599.
|
[38]
|
E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci., 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
|
[39]
|
G. McLachlan and T. Krishnan, The EM Algorithm and Extensions, vol. 382, John Wiley & Sons, 2008.
doi: 10.1002/9780470191613.
|
[40]
|
M. Netto, L. Gimeno and M. Mendes, On the optimal and suboptimal nonlinear filtering problem for discrete-time systems, IEEE Transactions on Automatic Control, 23 (1978), 1062-1067.
doi: 10.1109/TAC.1978.1101894.
|
[41]
|
J. Olsson, O. Cappé, R. Douc and E. Moulines, Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models, Bernoulli, 14 (2008), 155-179.
doi: 10.3150/07-BEJ6150.
|
[42]
|
T. B. Schön, A. Wills and B. Ninness, System identification of nonlinear state-space models, Automatica J. IFAC, 47 (2011), 39-49.
doi: 10.1016/j.automatica.2010.10.013.
|
[43]
|
R. H. Shumway and D. S. Stoffer, An approach to time series smoothing and forecasting using the em algorithm, Journal of Time Series Analysis, 3 (1982), 253-264.
|
[44]
|
A. Svensson, T. B. Schön and M. Kok, Nonlinear state space smoothing using the conditional particle filter, IFAC-PapersOnLine, 48 (2015), 975-980.
|
[45]
|
P. Tandeo, P. Ailliot, M. Bocquet, A. Carrassi, T. Miyoshi, M. Pulido and Y. Zhen, A review of innovation-based methods to jointly estimate model and observation error covariance matrices in ensemble data assimilation, Monthly Weather Review, 148 (2020), 3973-3994.
|
[46]
|
G. C. G. Wei and M. A. Tanner, A Monte Carlo implementation of the em algorithm and the poor man's data augmentation algorithms, Journal of the American statistical Association, 85 (1990), 699-704.
doi: 10.1080/01621459.1990.10474930.
|
[47]
|
N. Whiteley, Discussion on particle markov chain monte carlo methods, Journal of the Royal Statistical Society: Series B, 72 (2010), 306-307.
|