doi: 10.3934/dcdss.2022056
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Random uniform exponential attractors for Schrödinger lattice systems with quasi-periodic forces and multiplicative white noise

College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China

* Corresponding author: Shengfan Zhou

Celebrating the 80th Birthday of Professor Jibin Li

Received  December 2021 Revised  January 2022 Early access March 2022

Fund Project: The second author is supported by NSF of China grant 11871437

We mainly consider the existence of random uniform exponential attractors for Schrödinger lattice systems with quasi-periodic forces and multiplicative white noise. We first give an existence criterion for a random uniform exponential attractor for a jointly continuous non-autonomous random dynamical system (NRDS) defined on the space of infinite sequences with complex-valued components. Then we transfer the considered stochastic Schrödinger lattice system into a random system with random parameters and quasi-periodic forces without white noise through Ornstein-Uhlenbeck process, whose solutions generate a jointly continuous NRDS. Thirdly, we prove the existence of a uniform absorbing random set for this NRDS. Fourthly, we construct a bounded closed random set and verify the Lipschitz continuity of the NRDS on this random set, and next we decompose the difference between two solutions into a sum of two parts including some random variables with bounded expectation. Finally, we obtain the existence of a random uniform exponential attractor for the considered system.

Citation: Sijia Zhang, Shengfan Zhou. Random uniform exponential attractors for Schrödinger lattice systems with quasi-periodic forces and multiplicative white noise. Discrete and Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2022056
References:
[1]

A. Y. Abdallah, Uniform exponential attractors for first order non-autonomous lattice dynamical systems, J. Differential Equations, 251 (2011), 1489-1504.  doi: 10.1016/j.jde.2011.05.030.

[2]

L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998. doi: 10.1007/978-3-662-12878-7.

[3]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dynam., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.

[4]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.

[5]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.

[6]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Differential Equations, 253 (2012), 667-693.  doi: 10.1016/j.jde.2012.03.020.

[7]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc., 2002.

[8]

H. Cui and J. A. Langa, Uniform attractors for nonautonomous random dynamical systems, J. Differential Equations, 263 (2017), 1225-1268.  doi: 10.1016/j.jde.2017.03.018.

[9]

H. Cui and S. Zhou, Random attractor for Schrödinger lattice system with multiplicative white noise, J. Zhejiang Normal University (Nat. Sci.), 40 (2017), 17-23.  doi: 10.16218/j.issn.1001-5051.2017.01.003.

[10]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations, Res. Appl. Math., 37 (1994).

[11]

X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006), 767-793.  doi: 10.1080/07362990600751860.

[12]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.

[13]

Z. Han and S. Zhou, Random uniform exponential attractors for non-autonomous stochastic lattice systems and FitzHugh-Nagumo lattice systems with quasi-periodic forces and multiplicative noise, Stoch. Dynam., 20 (2020), 2050036, 38 pp. doi: 10.1142/S0219493720500367.

[14]

X. JiangS. Zhou and Z. Han, Random attractor for Schrö dinger lattice system with multiplicative white noise, J. Zhejiang Normal University (Nat. Sci.), 43 (2020), 251-258.  doi: 10.16218/j.issn.1001-5051.2020.03.002.

[15]

N. I. Karachalios and A. N. Yannacopoulos, Global existence and compact attractors for the discrete nonlinear Schrödinger equation, J. Differential Equations, 217 (2005), 88-123.  doi: 10.1016/j.jde.2005.06.002.

[16]

G. P. KevrekidisO. K. Rasmussen and R. A. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results, Inter. J. Modern Phys. B, 15 (2001), 2833-2900.  doi: 10.1142/S0217979201007105.

[17]

B. Wang, Dynamics of systems on infinite lattices, J. Differential Equations, 221 (2006), 224-245.  doi: 10.1016/j.jde.2005.01.003.

[18]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.  doi: 10.1016/j.jmaa.2006.08.070.

[19]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.

[20]

B. Wang and R. Wang, Asymptotic behavior of stochastic Schr ödinger lattice systems driven by nonlinear noise, Stoch. Anal. Appl., 38 (2020), 213-237.  doi: 10.1080/07362994.2019.1679646.

[21]

Z. Wang and S. Zhou, Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with multiplicative white noise, Disc. Conti. Dyna. Syst., 38 (2018), 4767-4817.  doi: 10.3934/dcds.2018210.

[22]

C. Zhao and S. Zhou, Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications, J. Math. Anal. Appl., 354 (2009), 78-95.  doi: 10.1016/j.jmaa.2008.12.036.

[23]

S. Zhou, Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise, J. Differential Equations, 263 (2017), 2247-2279.  doi: 10.1016/j.jde.2017.03.044.

[24]

S. Zhou and X. Han, Uniform exponential attractors for non-autonomous KGS and Zakharov lattice systems with quasiperiodic external forces, Nonlinear Anal., 78 (2013), 141-155.  doi: 10.1016/j.na.2012.10.001.

[25]

S. ZhouM. Zhao and H. Tan, Pullback and uniform exponential attractor for non-autonomous Schrödinger lattice equation, Acta Math. Appl. Sin., 42 (2019), 145-161. 

show all references

References:
[1]

A. Y. Abdallah, Uniform exponential attractors for first order non-autonomous lattice dynamical systems, J. Differential Equations, 251 (2011), 1489-1504.  doi: 10.1016/j.jde.2011.05.030.

[2]

L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998. doi: 10.1007/978-3-662-12878-7.

[3]

P. W. BatesH. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dynam., 6 (2006), 1-21.  doi: 10.1142/S0219493706001621.

[4]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.

[5]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.

[6]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Differential Equations, 253 (2012), 667-693.  doi: 10.1016/j.jde.2012.03.020.

[7]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc., 2002.

[8]

H. Cui and J. A. Langa, Uniform attractors for nonautonomous random dynamical systems, J. Differential Equations, 263 (2017), 1225-1268.  doi: 10.1016/j.jde.2017.03.018.

[9]

H. Cui and S. Zhou, Random attractor for Schrödinger lattice system with multiplicative white noise, J. Zhejiang Normal University (Nat. Sci.), 40 (2017), 17-23.  doi: 10.16218/j.issn.1001-5051.2017.01.003.

[10]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations, Res. Appl. Math., 37 (1994).

[11]

X. Fan, Attractors for a damped stochastic wave equation of sine-Gordon type with sublinear multiplicative noise, Stoch. Anal. Appl., 24 (2006), 767-793.  doi: 10.1080/07362990600751860.

[12]

X. HanW. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.

[13]

Z. Han and S. Zhou, Random uniform exponential attractors for non-autonomous stochastic lattice systems and FitzHugh-Nagumo lattice systems with quasi-periodic forces and multiplicative noise, Stoch. Dynam., 20 (2020), 2050036, 38 pp. doi: 10.1142/S0219493720500367.

[14]

X. JiangS. Zhou and Z. Han, Random attractor for Schrö dinger lattice system with multiplicative white noise, J. Zhejiang Normal University (Nat. Sci.), 43 (2020), 251-258.  doi: 10.16218/j.issn.1001-5051.2020.03.002.

[15]

N. I. Karachalios and A. N. Yannacopoulos, Global existence and compact attractors for the discrete nonlinear Schrödinger equation, J. Differential Equations, 217 (2005), 88-123.  doi: 10.1016/j.jde.2005.06.002.

[16]

G. P. KevrekidisO. K. Rasmussen and R. A. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results, Inter. J. Modern Phys. B, 15 (2001), 2833-2900.  doi: 10.1142/S0217979201007105.

[17]

B. Wang, Dynamics of systems on infinite lattices, J. Differential Equations, 221 (2006), 224-245.  doi: 10.1016/j.jde.2005.01.003.

[18]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.  doi: 10.1016/j.jmaa.2006.08.070.

[19]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.

[20]

B. Wang and R. Wang, Asymptotic behavior of stochastic Schr ödinger lattice systems driven by nonlinear noise, Stoch. Anal. Appl., 38 (2020), 213-237.  doi: 10.1080/07362994.2019.1679646.

[21]

Z. Wang and S. Zhou, Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with multiplicative white noise, Disc. Conti. Dyna. Syst., 38 (2018), 4767-4817.  doi: 10.3934/dcds.2018210.

[22]

C. Zhao and S. Zhou, Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications, J. Math. Anal. Appl., 354 (2009), 78-95.  doi: 10.1016/j.jmaa.2008.12.036.

[23]

S. Zhou, Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise, J. Differential Equations, 263 (2017), 2247-2279.  doi: 10.1016/j.jde.2017.03.044.

[24]

S. Zhou and X. Han, Uniform exponential attractors for non-autonomous KGS and Zakharov lattice systems with quasiperiodic external forces, Nonlinear Anal., 78 (2013), 141-155.  doi: 10.1016/j.na.2012.10.001.

[25]

S. ZhouM. Zhao and H. Tan, Pullback and uniform exponential attractor for non-autonomous Schrödinger lattice equation, Acta Math. Appl. Sin., 42 (2019), 145-161. 

[1]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[2]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[3]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[4]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[5]

Yangrong Li, Shuang Yang. Backward compact and periodic random attractors for non-autonomous sine-Gordon equations with multiplicative noise. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1155-1175. doi: 10.3934/cpaa.2019056

[6]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Random exponential attractor for stochastic non-autonomous suspension bridge equation with additive white noise. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021318

[7]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[8]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[9]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[10]

Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1

[11]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[12]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[13]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[14]

Yiju Chen, Xiaohu Wang. Asymptotic behavior of non-autonomous fractional stochastic lattice systems with multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021271

[15]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[16]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2221-2245. doi: 10.3934/cpaa.2016035

[17]

Radosław Czaja. Pullback attractors via quasi-stability for non-autonomous lattice dynamical systems. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021276

[18]

Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077

[19]

Chi Phan. Random attractor for stochastic Hindmarsh-Rose equations with multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3233-3256. doi: 10.3934/dcdsb.2020060

[20]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (172)
  • HTML views (140)
  • Cited by (0)

Other articles
by authors

[Back to Top]