[1]
|
C. Afri, V. Andrieu, L. Bako and P. Dufour, State and parameter estimation: A nonlinear Luenberger observer approach, IEEE Trans. Automat. Control, 62 (2017), 973–980. https://hal.archives-ouvertes.fr/hal-01232747.
doi: 10.1109/TAC.2016.2566804.
|
[2]
|
S. Amraoui, Data Assimilation for External Geophysics: The Back-and-Forth Nudging Method, PhD thesis, University of Nice Sophia Antipolis, France, 2019.
|
[3]
|
A. Arakawa, Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part Ⅰ, Journal of Computational Physics, 1 (1966), 119–143. http://www.sciencedirect.com/science/article/pii/0021999166900155.
|
[4]
|
R. Asselin, Frequency filter for time integrations, Monthly Weather Review, 100 (1972), 487-490.
doi: 10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO;2.
|
[5]
|
D. Auroux, P. Bansart and J. Blum, An easy-to-implement and efficient data assimilation method for the identification of the initial condition: The Back and Forth Nudging (BFN) algorithm, in Proc. Int. Conf. Inverse Problems in Engineering, vol. 135, J. Phys.: Conf. Ser., 2008.
doi: 10.1088/1742-6596/135/1/012011.
|
[6]
|
D. Auroux and J. Blum, Back and forth nudging algorithm for data assimilation problems, C. R. Math. Acad. Sci. Paris, 340 (2005), 873-878.
doi: 10.1016/j.crma.2005.05.006.
|
[7]
|
D. Auroux and J. Blum, A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm, Nonlinear Processes in Geophysics, 15 (2008), 305–319. https://hal.archives-ouvertes.fr/hal-00331117/document.
doi: 10.5194/npg-15-305-2008.
|
[8]
|
D. Auroux, J. Blum and M. Nodet, Diffusive back and forth nudging algorithm for data assimilation, C. R. Math. Acad. Sci. Paris, 349 (2011), 849-854.
doi: 10.1016/j.crma.2011.07.004.
|
[9]
|
D. Auroux and M. Nodet, The back and forth nudging algorithm for data assimilation problems: Theoretical results on transport equations, ESAIM Control Optim. Calc. Var., 18 (2012), 318-342.
doi: 10.1051/cocv/2011004.
|
[10]
|
P. Bernard and V. Andrieu, Luenberger observers for non autonomous nonlinear systems, IEEE Trans. Automat. Control, 64 (2019), 270-281.
doi: 10.1109/TAC.2018.2872202.
|
[11]
|
N. Bof, R. Carli and L. Schenato, Lyapunov theory for discrete time systems, 2018.
|
[12]
|
B. Bolin, The atmosphere and the sea in motion: Scientific contributions to the rossby memorial volume, Rockefeller Univ. Press, 1959.
|
[13]
|
A.-C. Boulanger, P. Moireau, B. Perthame and J. Sainte-Marie, Data assimilation for hyperbolic conservation laws. A Luenberger observer approach based on a kinetic description, Commun. Math. Sci., 13 (2015), 587 – 622. https://hal.archives-ouvertes.fr/hal-00924559.
doi: 10.4310/CMS.2015.v13.n3.a1.
|
[14]
|
L. Brivadis, V. Andrieu and U. Serres, Luenberger observers for discrete-time nonlinear systems, in 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, 2019, 3435–3440. https://hal.archives-ouvertes.fr/hal-02467958.
doi: 10.1109/CDC40024.2019.9029220.
|
[15]
|
W. Castaings, D. Dartus, F.-X. Le Dimet and G.-M. Saulnier, Sensitivity analysis and parameter estimation for distributed hydrological modeling: Potential of variational methods, Hydrology and Earth System Sciences, 13 (2009), 503-517.
doi: 10.5194/hess-13-503-2009.
|
[16]
|
D. B. Chelton, R. A. deSzoeke, M. G. Schlax, K. El Naggar and N. Siwertz, Geographical variability of the first baroclinic rossby radius of deformation, Journal of Physical Oceanography, 28 (1998), 433-460.
doi: 10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.
|
[17]
|
A. Donovan, M. Mirrahimi and P. Rouchon, Back and forth nudging for quantum state reconstruction, in 2010 4th International Symposium on Communications, Control and Signal Processing (ISCCSP), 2010, 1–5.
doi: 10.1109/ISCCSP.2010.5463439.
|
[18]
|
D. R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Texts in Applied Mathematics, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4757-3081-4.
|
[19]
|
D. Esteban-Fernandez, Swot Project: Mission Performance and Error Budget, Technical Report JPL D-79084, NASA/JPL, 2017. https://swot.jpl.nasa.gov/system/documents/files/2178_2178_SWOT_D-79084_v10Y_FINAL_REVA__06082017.pdf.
|
[20]
|
L.-L. Fu and C. Ubelmann, On the transition from profile altimeter to swath altimeter for observing global ocean surface topography, J. Atmos. Oceanic Technol., 31 (2014), 560-568.
doi: 10.1175/JTECH-D-13-00109.1.
|
[21]
|
L. Gaultier, C. Ubelmann and L.-L. Fu, The challenge of using future SWOT data for oceanic field reconstruction, J. Atmos. Oceanic Technol., 33 (2016), 119-126.
doi: 10.1175/JTECH-D-15-0160.1.
|
[22]
|
J.-P. Gauthier and I. Kupka, Deterministic Observation Theory and Applications, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511546648.
|
[23]
|
J. E. Hoke and R. A. Anthes, The initialization of numerical models by a dynamic-initialization technique, Monthly Weather Review, 104 (1976), 1551-1556.
doi: 10.1175/1520-0493(1976)104<1551:TIONMB>2.0.CO;2.
|
[24]
|
A. H. Jazwinski, Stochastic Processes and Filtering Theory, Courier Corporation, 1970.
|
[25]
|
E. Kazantsev, Local Lyapunov exponents of the quasi-geostrophic ocean dynamics, Appl. Math. Comput., 104 (1999), 217-257.
doi: 10.1016/S0096-3003(98)10078-4.
|
[26]
|
N. Kazantzis and C. Kravaris, Nonlinear observer design using Lyapunov's auxiliary theorem, Systems Control Lett., 34 (1998), 241-247.
doi: 10.1016/S0167-6911(98)00017-6.
|
[27]
|
H. K. Khalil, Nonlinear Systems; 3rd Ed., Prentice-Hall, Upper Saddle River, NJ, 2002.
|
[28]
|
F. Le Guillou, S. Metref, E. Cosme, C. Ubelmann, M. Ballarotta, J. Verron and J. Le Sommer, Mapping altimetry in the forthcoming SWOT era by back-and-forth nudging a one-layer quasi-geostrophic model, 2020, https://hal.archives-ouvertes.fr/hal-03084218, Preprint.
|
[29]
|
L. Lei, D. R. Stauffer and A. Deng, A hybrid nudging-ensemble kalman filter approach to data assimilation in wrf/dart, Quarterly Journal of the Royal Meteorological Society, 138 (2012), 2066-2078.
doi: 10.1002/qj.1939.
|
[30]
|
A. C. Lorenc, N. E. Bowler, A. M. Clayton, S. R. Pring and D. Fairbairn, Comparison of hybrid-4denvar and hybrid-4dvar data assimilation methods for global NWP, Monthly Weather Review, 143 (2014), 212-229.
doi: 10.1175/MWR-D-14-00195.1.
|
[31]
|
D. Luenberger, Observers for multivariable systems, IEEE Transactions on Automatic Control, 11 (1966), 190-197.
doi: 10.1109/TAC.1966.1098323.
|
[32]
|
J. Marshall, A. Adcroft, C. Hill, L. Perelman and C. Heisey, A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. of Geophys. Res., 102 (1997), 5753-5766.
|
[33]
|
R. Morrow, L.-L. Fu, F. Ardhuin, M. Benkiran, B. Chapron, E. Cosme, F. d'Ovidio, J. T. Farrar, S. T. Gille, G. Lapeyre, P.-Y. Le Traon, A. Pascual, A. Ponte, B. Qiu, N. Rascle, C. Ubelmann, J. Wang and E. D. Zaron, Global observations of fine-scale ocean surface topography with the surface water and ocean topography (SWOT) mission, Frontiers in Marine Science, 6.
doi: 10.3389/fmars.2019.00232.
|
[34]
|
J. Pedlosky, Geophysical Fluid Dynamics, Springer, 1992.
|
[35]
|
A. J. Robert, The integration of a low order spectral form of the primitive meteorological equations, Journal of the Meteorological Society of Japan. Ser. Ⅱ, 44 (1966), 237-245.
|
[36]
|
G. A. Ruggiero, Y. Ourmières, E. Cosme, J. Blum, D. Auroux and J. Verron, Data assimilation experiments using diffusive back-and-forth nudging for the NEMO ocean model, Nonlinear Processes in Geophysics, 22 (2015), 233–248. https://hal-amu.archives-ouvertes.fr/hal-01232425/document.
|
[37]
|
R. E. Schlesinger, L. W. Uccellini and D. R. Johnson, The effects of the Asselin time filter on numerical solutions to the linearized shallow-water wave equations, Monthly Weather Review, 111 (1983), 455-467.
doi: 10.1175/1520-0493(1983)111<0455:TEOTAT>2.0.CO;2.
|
[38]
|
D. R. Stauffer and N. L. Seaman, Use of four-dimensional data assimilation in a limited-area mesoscale model. Part Ⅰ: Experiments with Synoptic-Scale data, Monthly Weather Review, 118 (1990), 1250-1277.
doi: 10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2.
|
[39]
|
C. Ubelmann, P. Klein and L.-L. Fu, Dynamic interpolation of sea surface height and potential applications for future high-resolution altimetry mapping, Journal of Atmospheric and Oceanic Technology, 32 (2014), 177–184, http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-14-00152.1.
|
[40]
|
B. Zhou, G.-B. Cai and G.-R. Duan, Stabilisation of time-varying linear systems via lyapunov differential equations, Internat. J. Control, 86 (2013), 332-347.
doi: 10.1080/00207179.2012.728008.
|