$\underline {{Initialization}}$: for $ i = 1, \ldots, N $ |
generate $ w_{1}^{i} $ |
$ X_{1}^{a, i} = X_{0}+w_{1}^i $ |
For $ k \geq 2 $ |
$\underline{Forecast}$: for $ i = 1, \ldots, N $ |
generate $ w_{k}^{i} $ |
$ X_{k}^{f,i} = M[X^{a,i}_{k-1}]+w_{k}^i $ |
$ X_{k}^{f} = \frac{1}{N} \sum_{i = 1}^{N} X_{k}^{f, i} $ |
$ P_{k}^{f} = \frac{1}{N-1}\sum_{i = 1}^{N}(X_{k}^{f, i}-X_{k}^{f})(X_{k}^{f, i}-X_{k}^{f})^{T} $ |
$\underline{Analysis}:$: for $ i = 1, \ldots, N $ |
generate $ \varepsilon_{k}^{i} \sim \mathcal{N}(0,R) $ |
$ K_{k} = P_{k}^{f} H^{T}(H P_{k}^{f} H^{T}+R)^{-1} $ |
$ d^{i}_{k} = Y_{k}+\varepsilon^{i}_{k}-HX^{f,i}_{k} $ |
$ X^{a,i}_{k} = X^{f,i}_{k}+K_{k}d^{i}_{k} $ |
$ X_{k}^{a} = \frac{1}{N} \sum_{i = 1}^{N} X_{k}^{a, i} $ |