• Previous Article
    Deep learning-based multiple moving vehicle detection and tracking using a nonlinear fourth-order reaction-diffusion based multi-scale video object analysis
  • DCDS-S Home
  • This Issue
  • Next Article
    Dynamics of delayed cellular neural networks in the Stepanov pseudo almost automorphic space
doi: 10.3934/dcdss.2022063
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Expected vs. real transaction costs in European option pricing

1. 

Università degli Studi di Bari "Aldo Moro", Department of Economics, Management and Business Law, Largo Abbazia Santa Scolastica 53, Bari, I-70124, Italy

2. 

Università degli Studi di Roma "La Sapienza", Department of Methods and Models for Economics, Territory and Finance, Via del Castro Laurenziano 9, Roma, I-00185, Italy

* Corresponding author: Michele Bufalo

In loving memory of Rosa Maria Mininni

Received  August 2021 Revised  January 2022 Early access March 2022

As an application and extension of some previous results contained in [1], we face up the problem of the option pricing in presence of transaction costs and hence in the framework of incomplete markets. The model proposed herein passes through defining properly the expected transaction costs, opposite to the real transaction costs in trading. The analysis is carried out both in the discrete and the continuous case and leads to suitable modifications of Cox-Ross-Rubinstein and Black-Scholes formulas. An application to a specific case referred to real market data at the end of the paper seems to validate our approach.

Citation: Antonio Attalienti, Michele Bufalo. Expected vs. real transaction costs in European option pricing. Discrete and Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2022063
References:
[1]

A. Attalienti and M. Bufalo, Option pricing formulas under a change of numèraire, Opuscula Mathematica, 40 (2020), 451-473.  doi: 10.7494/OpMath.2020.40.4.451.

[2]

BIS, Is the Unthinkable Becoming Routine?, Technical Report, Bank for International Settlements, (2015).

[3]

F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, 81, (1973), 637–654. doi: 10.1086/260062.

[4]

M. Bufalo, R. M. Mininni and S. Romanelli, A semigroup approach to generalized Black-Scholes type equation in incomplete markets, Journal of Mathematical Analysis and Applications, 447, (2019), 1195–1223. doi: 10.1016/j.jmaa.2019.05.008.

[5]

J. C. Cox, S. A. Ross and M. Rubinstein, Option Pricing: A Simplified Approach, Journal of Financial Economics, 7, (1979), 229–263. doi: 10.1016/0304-405X(79)90015-1.

[6]

M. H. Davis, V. Panas and T. Zariphopoulou, European option pricing with transaction costs, SIAM Journal of Control and Optimization, 31, (1993), 470–493. doi: 10.1137/0331022.

[7]

K. C. Engelen, The unthinkable as the new normal, The International Economy, 29, (2015).

[8]

R. EngleR. Ferstenberg and J. Russell, Measuring and modeling execution cost and risk, The Journal of Portfolio Management, 38 (2006), 14-28.  doi: 10.2139/ssrn.1211162.

[9]

H. GemanN. El Karoui and J. C. Rochet, Changes of numéraire, change of probability measure and option pricing, Journal of Applied Probability, 32 (1995), 443-458.  doi: 10.2307/3215299.

[10]

J. A. GoldsteinR. M. Mininni and S. Romanelli, A new explicit formula for the solution of the Black-Merton-Scholes equation, Infinite Dimensional Stochastic Analysis, QP–PQ: Quantum Probab. White Noise Anal., World Sci. Publ., Hackensack, NJ, 22 (2008), 226-235.  doi: 10.1142/9789812779557_0013.

[11]

P. GuasoniE. Lépinette and M. Rásonyi, The fundamental theorem of asset pricing under transaction costs, Finance and Stochastics, 16 (2012), 741-777.  doi: 10.1007/s00780-012-0185-0.

[12]

P. Guasoni, M. Rásonyi and W. Shachermayer, Consistent price systems and face-lifting pricing under transaction costs, The Annals of Applied Probability, 18, (2008), 491-520. doi: 10.1214/07-AAP461.

[13]

J. Kallsen and J. Muhle-Karbe, Option pricing and hedging with small transaction costs, Mathematical Finance, 25 (2015), 702-723.  doi: 10.1111/mafi.12035.

[14]

M. A. Kociński, On transaction costs in stock trading, Quantitative Methods in Economics, 18 (2017), 58-67. 

[15]

H. E. Leland, Option pricing and replication with transaction costs, The Journal of Finance, 40 (1985), 1283-1301. 

[16]

R. C. Merton, Theory of rational option pricing, Journal of Economy and Management Sciences, 4 (1973), 141-183.  doi: 10.2307/3003143.

[17]

M. Musiela and T. Zariphopoulou, An example of indifference price under exponential preferences, Finance and Stochastics, 8 (2014), 229-239.  doi: 10.1007/s00780-003-0112-5.

[18]

L. T. Nielsen, Understanding $N(d_1)$ and $N(d_2)$: Risk-adjusted probabilities in the Black-Scholes model, Revue Finance, 14 (1993), 95-106. 

[19]

W. Shachermayer, Asymptotic Theory of Transaction Costs, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2017. doi: 10.4171/173.

[20]

S. E. Shreve, Stochastic Calculus for Finance I: The Binomial Asset Pricing Model, Springer-Verlag, New York, 2004.

[21]

S. E. Shreve, Stochastic Calculus for Finance. II. Continuous-Time Models, Springer-Verlag, New York, 2004.

[22]

A. E. Whalley and P. Wilmott, An asymptotic analysis of an optimal hedging model for option pricing with transaction costs, Mathematical Finance, 7 (1997), 307-324.  doi: 10.1111/1467-9965.00034.

show all references

References:
[1]

A. Attalienti and M. Bufalo, Option pricing formulas under a change of numèraire, Opuscula Mathematica, 40 (2020), 451-473.  doi: 10.7494/OpMath.2020.40.4.451.

[2]

BIS, Is the Unthinkable Becoming Routine?, Technical Report, Bank for International Settlements, (2015).

[3]

F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, 81, (1973), 637–654. doi: 10.1086/260062.

[4]

M. Bufalo, R. M. Mininni and S. Romanelli, A semigroup approach to generalized Black-Scholes type equation in incomplete markets, Journal of Mathematical Analysis and Applications, 447, (2019), 1195–1223. doi: 10.1016/j.jmaa.2019.05.008.

[5]

J. C. Cox, S. A. Ross and M. Rubinstein, Option Pricing: A Simplified Approach, Journal of Financial Economics, 7, (1979), 229–263. doi: 10.1016/0304-405X(79)90015-1.

[6]

M. H. Davis, V. Panas and T. Zariphopoulou, European option pricing with transaction costs, SIAM Journal of Control and Optimization, 31, (1993), 470–493. doi: 10.1137/0331022.

[7]

K. C. Engelen, The unthinkable as the new normal, The International Economy, 29, (2015).

[8]

R. EngleR. Ferstenberg and J. Russell, Measuring and modeling execution cost and risk, The Journal of Portfolio Management, 38 (2006), 14-28.  doi: 10.2139/ssrn.1211162.

[9]

H. GemanN. El Karoui and J. C. Rochet, Changes of numéraire, change of probability measure and option pricing, Journal of Applied Probability, 32 (1995), 443-458.  doi: 10.2307/3215299.

[10]

J. A. GoldsteinR. M. Mininni and S. Romanelli, A new explicit formula for the solution of the Black-Merton-Scholes equation, Infinite Dimensional Stochastic Analysis, QP–PQ: Quantum Probab. White Noise Anal., World Sci. Publ., Hackensack, NJ, 22 (2008), 226-235.  doi: 10.1142/9789812779557_0013.

[11]

P. GuasoniE. Lépinette and M. Rásonyi, The fundamental theorem of asset pricing under transaction costs, Finance and Stochastics, 16 (2012), 741-777.  doi: 10.1007/s00780-012-0185-0.

[12]

P. Guasoni, M. Rásonyi and W. Shachermayer, Consistent price systems and face-lifting pricing under transaction costs, The Annals of Applied Probability, 18, (2008), 491-520. doi: 10.1214/07-AAP461.

[13]

J. Kallsen and J. Muhle-Karbe, Option pricing and hedging with small transaction costs, Mathematical Finance, 25 (2015), 702-723.  doi: 10.1111/mafi.12035.

[14]

M. A. Kociński, On transaction costs in stock trading, Quantitative Methods in Economics, 18 (2017), 58-67. 

[15]

H. E. Leland, Option pricing and replication with transaction costs, The Journal of Finance, 40 (1985), 1283-1301. 

[16]

R. C. Merton, Theory of rational option pricing, Journal of Economy and Management Sciences, 4 (1973), 141-183.  doi: 10.2307/3003143.

[17]

M. Musiela and T. Zariphopoulou, An example of indifference price under exponential preferences, Finance and Stochastics, 8 (2014), 229-239.  doi: 10.1007/s00780-003-0112-5.

[18]

L. T. Nielsen, Understanding $N(d_1)$ and $N(d_2)$: Risk-adjusted probabilities in the Black-Scholes model, Revue Finance, 14 (1993), 95-106. 

[19]

W. Shachermayer, Asymptotic Theory of Transaction Costs, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2017. doi: 10.4171/173.

[20]

S. E. Shreve, Stochastic Calculus for Finance I: The Binomial Asset Pricing Model, Springer-Verlag, New York, 2004.

[21]

S. E. Shreve, Stochastic Calculus for Finance. II. Continuous-Time Models, Springer-Verlag, New York, 2004.

[22]

A. E. Whalley and P. Wilmott, An asymptotic analysis of an optimal hedging model for option pricing with transaction costs, Mathematical Finance, 7 (1997), 307-324.  doi: 10.1111/1467-9965.00034.

Figure 1.  Expected transaction cost coefficient $ c_{\beta} $ for different risk-free rate $ r $ and volatility $ \sigma $
Figure 2.  Ask and Bid Unicredit daily stock prices observed from 8 October 2018 to 4 October 2019
Figure 3.  Real transaction cost coefficient $ c_{\gamma} $ versus the expected transaction cost coefficient $ c_{\beta} $
Figure 4.  True call/put prices versus simulated call/put prices (with $ c_{\gamma} $ and $ c_{\beta} $, respectively)
Table 1.  Ask/Bid prices (€) of call and put options for different strike $ X $ and volatility $ \sigma $, with maturity $ T = 1 $ month, risk-free rate $ r = -0.47\% $, dividend $ \delta = 0.27 $€ and (initial) underlying asset prices $ S^{ask}_0 = 10.05 $€ and $ S^{bid}_0 = 10.26 $, €
Bid call prices Ask call prices Strike Bid put prices Ask put prices Volatility
2.571 3.071 7.4 0.0001 0.15 0.9500
2.376 2.876 7.6 0.0001 0.15 0.9330
2.185 2.685 7.8 0.0001 0.15 0.8670
2.002 2.502 8 0.0001 0.15 0.8050
1.865 2.165 8.2 0.0001 0.15 0.7450
1.6775 1.9775 8.4 0.044 0.0855 0.6850
1.582 1.7315 8.6 0.061 0.105 0.6260
1.4055 1.5525 8.8 0.09 0.1215 0.5740
1.2325 1.3805 9 0.1155 0.1505 0.5500
0.85 0.9745 9.5 0.2125 0.257 0.5280
0.553 0.604 10 0.379 0.43 0.5080
0.307 0.358 10.5 0.5275 0.808 0.4890
0.151 0.1945 11 0.935 1.063 0.4480
0.066 0.099 11.5 1.3355 1.4865 0.4150
0.0006 0.1465 12 1.7165 2.0165 0.3660
0.0001 0.15 12.5 2.085 2.585 0.3780
0.0001 0.15 13 2.591 3.091 0.3950
0.0001 0.15 13.5 3.0905 3.5905 0.4160
0.0001 0.15 14 3.5525 4.0525 0.4410
0.0001 0.15 14.5 4.09 4.59 0.4700
0.0001 0.15 15 4.558 5.058 0.5020
0.0001 0.15 15.5 5.00 6.00 0.5380
0.0001 0.15 16 5.288 6.288 0.5730
Bid call prices Ask call prices Strike Bid put prices Ask put prices Volatility
2.571 3.071 7.4 0.0001 0.15 0.9500
2.376 2.876 7.6 0.0001 0.15 0.9330
2.185 2.685 7.8 0.0001 0.15 0.8670
2.002 2.502 8 0.0001 0.15 0.8050
1.865 2.165 8.2 0.0001 0.15 0.7450
1.6775 1.9775 8.4 0.044 0.0855 0.6850
1.582 1.7315 8.6 0.061 0.105 0.6260
1.4055 1.5525 8.8 0.09 0.1215 0.5740
1.2325 1.3805 9 0.1155 0.1505 0.5500
0.85 0.9745 9.5 0.2125 0.257 0.5280
0.553 0.604 10 0.379 0.43 0.5080
0.307 0.358 10.5 0.5275 0.808 0.4890
0.151 0.1945 11 0.935 1.063 0.4480
0.066 0.099 11.5 1.3355 1.4865 0.4150
0.0006 0.1465 12 1.7165 2.0165 0.3660
0.0001 0.15 12.5 2.085 2.585 0.3780
0.0001 0.15 13 2.591 3.091 0.3950
0.0001 0.15 13.5 3.0905 3.5905 0.4160
0.0001 0.15 14 3.5525 4.0525 0.4410
0.0001 0.15 14.5 4.09 4.59 0.4700
0.0001 0.15 15 4.558 5.058 0.5020
0.0001 0.15 15.5 5.00 6.00 0.5380
0.0001 0.15 16 5.288 6.288 0.5730
Table 2.  RMSE between the true ask/bid call and put prices and simulated values
our model Leland model
ask call price 12.52% 18.47%
bid call price 10.38% 13.40%
ask put price 20.46% 22.10%
bid put price 19.85% 22.23%
our model Leland model
ask call price 12.52% 18.47%
bid call price 10.38% 13.40%
ask put price 20.46% 22.10%
bid put price 19.85% 22.23%
[1]

Francesca Biagini, Thomas Reitsam. Asset price bubbles in markets with transaction costs. Frontiers of Mathematical Finance, , () : -. doi: 10.3934/fmf.2022002

[2]

Cuilian You, Le Bo. Option pricing formulas for generalized fuzzy stock model. Journal of Industrial and Management Optimization, 2020, 16 (1) : 387-396. doi: 10.3934/jimo.2018158

[3]

Wen Li, Song Wang. Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme. Journal of Industrial and Management Optimization, 2013, 9 (2) : 365-389. doi: 10.3934/jimo.2013.9.365

[4]

Donny Citra Lesmana, Song Wang. A numerical scheme for pricing American options with transaction costs under a jump diffusion process. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1793-1813. doi: 10.3934/jimo.2017019

[5]

Guillermo Magnou, Ernesto Mordecki, Andrés Sosa. Pricing bond options in emerging markets: A case study. Journal of Dynamics and Games, 2018, 5 (1) : 21-30. doi: 10.3934/jdg.2018003

[6]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial and Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[7]

Dingjun Yao, Rongming Wang, Lin Xu. Optimal asset control of a geometric Brownian motion with the transaction costs and bankruptcy permission. Journal of Industrial and Management Optimization, 2015, 11 (2) : 461-478. doi: 10.3934/jimo.2015.11.461

[8]

Zhongbao Zhou, Ximei Zeng, Helu Xiao, Tiantian Ren, Wenbin Liu. Multiperiod portfolio optimization for asset-liability management with quadratic transaction costs. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1493-1515. doi: 10.3934/jimo.2018106

[9]

Min Dai, Zhou Yang. A note on finite horizon optimal investment and consumption with transaction costs. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1445-1454. doi: 10.3934/dcdsb.2016005

[10]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2483-2504. doi: 10.3934/jimo.2021077

[11]

Haiying Liu, Xinxing Luo, Wenjie Bi, Yueming Man, Kok Lay Teo. Dynamic pricing of network goods in duopoly markets with boundedly rational consumers. Journal of Industrial and Management Optimization, 2017, 13 (1) : 429-447. doi: 10.3934/jimo.2016025

[12]

Zhen Wang, Sanyang Liu. Multi-period mean-variance portfolio selection with fixed and proportional transaction costs. Journal of Industrial and Management Optimization, 2013, 9 (3) : 643-657. doi: 10.3934/jimo.2013.9.643

[13]

Chuancun Yin, Kam Chuen Yuen. Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1247-1262. doi: 10.3934/jimo.2015.11.1247

[14]

Gongpin Cheng, Rongming Wang, Dingjun Yao. Optimal dividend and capital injection strategy with excess-of-loss reinsurance and transaction costs. Journal of Industrial and Management Optimization, 2018, 14 (1) : 371-395. doi: 10.3934/jimo.2017051

[15]

Jiapeng Liu, Ruihua Liu, Dan Ren. Investment and consumption in regime-switching models with proportional transaction costs and log utility. Mathematical Control and Related Fields, 2017, 7 (3) : 465-491. doi: 10.3934/mcrf.2017017

[16]

Alexander Melnikov, Hongxi Wan. CVaR-hedging and its applications to equity-linked life insurance contracts with transaction costs. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 343-368. doi: 10.3934/puqr.2021017

[17]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial and Management Optimization, 2022, 18 (2) : 795-823. doi: 10.3934/jimo.2020179

[18]

Marianito R. Rodrigo, Rogemar S. Mamon. Bond pricing formulas for Markov-modulated affine term structure models. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2685-2702. doi: 10.3934/jimo.2020089

[19]

Kai Zhang, Song Wang. Convergence property of an interior penalty approach to pricing American option. Journal of Industrial and Management Optimization, 2011, 7 (2) : 435-447. doi: 10.3934/jimo.2011.7.435

[20]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial and Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (198)
  • HTML views (101)
  • Cited by (0)

Other articles
by authors

[Back to Top]