\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

$ \Sigma $-shaped bifurcation curves for classes of elliptic systems

Abstract Full Text(HTML) Figure(5) Related Papers Cited by
  • We study positive solutions to classes of steady state reaction diffusion systems of the form:

    $ \begin{equation*} \left\lbrace \begin{matrix}-\Delta u = \lambda f(v) ;\; \Omega\\ -\Delta v = \lambda g(u) ;\; \Omega\\ \frac{\partial u}{\partial \eta}+\sqrt{\lambda} u = 0; \; \partial \Omega\\ \frac{\partial v}{\partial \eta}+\sqrt{\lambda}v = 0; \; \partial \Omega\ \end{matrix} \right. \end{equation*} $

    where $ \lambda>0 $ is a positive parameter, $ \Omega $ is a bounded domain in $ \mathbb{R}^N $; $ N > 1 $ with smooth boundary $ \partial \Omega $ or $ \Omega = (0, 1) $, $ \frac{\partial z}{\partial \eta} $ is the outward normal derivative of $ z $. Here $ f, g \in C^2[0, r) \cap C[0, \infty) $ for some $ r>0 $. Further, we assume that $ f $ and $ g $ are increasing functions such that $ f(0) = 0 = g(0) $, $ f'(0) = g'(0) = 1 $, $ f''(0)>0, g''(0)>0 $, and $ \lim\limits_{s \rightarrow \infty} \frac{f(Mg(s))}{s} = 0 $ for all $ M>0 $. Under certain additional assumptions on $ f $ and $ g $ we prove that the bifurcation diagram for positive solutions of this system is at least $ \Sigma- $shaped. We also discuss an example where $ f $ is sublinear at $ \infty $ and $ g $ is superlinear at $ \infty $ which satisfy our hypotheses.

    Mathematics Subject Classification: Primary: 35J15, 35J25, 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Bifurcation diagram of (1.1) when hypotheses of Theorem 1.1(b) $ (H_1-H_3) $ hold

    Figure 2.  Bifurcation diagram of (1.1) when hypotheses of Corollary 1 $ (H_1-H_4) $ hold

    Figure 3.  Shape of $ h $ producing multiplicity

    Figure 4.  Prototypical shapes of $ f $ and $ g $ producing a $ \Sigma- $shaped bifurcation curve

    Figure 5.  Graph of $ f $ and corresponding typical bifurcation curves for two sets of parameters $ (k, \alpha) $

  • [1] A. AcharyaN. FonsekaJ. Quiroa and R. Shivaji, $\Sigma$-Shaped Bifurcation Curves, Adv. Nonlinear Anal., 10 (2021), 1255-1266.  doi: 10.1515/anona-2020-0180.
    [2] A. Acharya, N. Fonseka and R. Shivaji, Analysis of reaction diffusion systems where a parameter influences both the reaction terms as well as the bounday, Bound. Value Probl., (2021), Paper No. 15, 8 pp. doi: 10.1186/s13661-021-01490-0.
    [3] J. AliM. Ramaswamy and R. Shivaji, Multiple positive solutions for classes of elliptic systems with combined nonlinear effects, Differential Integral Equations, 19 (2006), 669-680. 
    [4] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.  doi: 10.1137/1018114.
    [5] A. CastroJ. B. Garner and R. Shivaji, Existence results for classes of sub-linear semipositone problems, Results Math., 23 (1993), 214-220.  doi: 10.1007/BF03322297.
    [6] J. T. CroninJ. Goddard and R. Shivaji, Effects of patch-matrix composition and individual movement response on population persistence at the patch-level, Bull. Math. Biol., 81 (2019), 3933-3975.  doi: 10.1007/s11538-019-00634-9.
    [7] N. Fonseka, J. Machado and R. Shivaji, A study of logistic growth models influenced by the exterior matrix hostility and Grazing in an interior patch, Electron J. Qual. Theory Differ. Equ., (2020), Paper No. 17, 11 pp. doi: 10.14232/ejqtde.2020.1.17.
    [8] N. FonsekaR. ShivajiB. Son and K. Spetzer, Classes of reaction diffusion equations where a parameter influences the equation as well as the boundary condition, J. Math. Anal. Appl., 476 (2019), 480-494.  doi: 10.1016/j.jmaa.2019.03.053.
    [9] J. Goddard II, Q. A. Morris, S. B. Robinson and R. Shivaji, An exact bifurcation diagram for a reaction diffusion equation arising in population dynamics, Bound. Value Probl., (2018), Paper No. 170, 17 pp. doi: 10.1186/s13661-018-1090-z.
    [10] R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications (Arlington, Tex., 1986), Lecture Notes in Pure and Appl. Math., Dekker, New York, 109 (1987), 561-566. 
  • 加载中

Figures(5)

SHARE

Article Metrics

HTML views(669) PDF downloads(248) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return