Article Contents
Article Contents

# $\Sigma$-shaped bifurcation curves for classes of elliptic systems

• We study positive solutions to classes of steady state reaction diffusion systems of the form:

$\begin{equation*} \left\lbrace \begin{matrix}-\Delta u = \lambda f(v) ;\; \Omega\\ -\Delta v = \lambda g(u) ;\; \Omega\\ \frac{\partial u}{\partial \eta}+\sqrt{\lambda} u = 0; \; \partial \Omega\\ \frac{\partial v}{\partial \eta}+\sqrt{\lambda}v = 0; \; \partial \Omega\ \end{matrix} \right. \end{equation*}$

where $\lambda>0$ is a positive parameter, $\Omega$ is a bounded domain in $\mathbb{R}^N$; $N > 1$ with smooth boundary $\partial \Omega$ or $\Omega = (0, 1)$, $\frac{\partial z}{\partial \eta}$ is the outward normal derivative of $z$. Here $f, g \in C^2[0, r) \cap C[0, \infty)$ for some $r>0$. Further, we assume that $f$ and $g$ are increasing functions such that $f(0) = 0 = g(0)$, $f'(0) = g'(0) = 1$, $f''(0)>0, g''(0)>0$, and $\lim\limits_{s \rightarrow \infty} \frac{f(Mg(s))}{s} = 0$ for all $M>0$. Under certain additional assumptions on $f$ and $g$ we prove that the bifurcation diagram for positive solutions of this system is at least $\Sigma-$shaped. We also discuss an example where $f$ is sublinear at $\infty$ and $g$ is superlinear at $\infty$ which satisfy our hypotheses.

Mathematics Subject Classification: Primary: 35J15, 35J25, 35J60.

 Citation:

• Figure 1.  Bifurcation diagram of (1.1) when hypotheses of Theorem 1.1(b) $(H_1-H_3)$ hold

Figure 2.  Bifurcation diagram of (1.1) when hypotheses of Corollary 1 $(H_1-H_4)$ hold

Figure 3.  Shape of $h$ producing multiplicity

Figure 4.  Prototypical shapes of $f$ and $g$ producing a $\Sigma-$shaped bifurcation curve

Figure 5.  Graph of $f$ and corresponding typical bifurcation curves for two sets of parameters $(k, \alpha)$

•  [1] A. Acharya, N. Fonseka, J. Quiroa and R. Shivaji, $\Sigma$-Shaped Bifurcation Curves, Adv. Nonlinear Anal., 10 (2021), 1255-1266.  doi: 10.1515/anona-2020-0180. [2] A. Acharya, N. Fonseka and R. Shivaji, Analysis of reaction diffusion systems where a parameter influences both the reaction terms as well as the bounday, Bound. Value Probl., (2021), Paper No. 15, 8 pp. doi: 10.1186/s13661-021-01490-0. [3] J. Ali, M. Ramaswamy and R. Shivaji, Multiple positive solutions for classes of elliptic systems with combined nonlinear effects, Differential Integral Equations, 19 (2006), 669-680. [4] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.  doi: 10.1137/1018114. [5] A. Castro, J. B. Garner and R. Shivaji, Existence results for classes of sub-linear semipositone problems, Results Math., 23 (1993), 214-220.  doi: 10.1007/BF03322297. [6] J. T. Cronin, J. Goddard and R. Shivaji, Effects of patch-matrix composition and individual movement response on population persistence at the patch-level, Bull. Math. Biol., 81 (2019), 3933-3975.  doi: 10.1007/s11538-019-00634-9. [7] N. Fonseka, J. Machado and R. Shivaji, A study of logistic growth models influenced by the exterior matrix hostility and Grazing in an interior patch, Electron J. Qual. Theory Differ. Equ., (2020), Paper No. 17, 11 pp. doi: 10.14232/ejqtde.2020.1.17. [8] N. Fonseka, R. Shivaji, B. Son and K. Spetzer, Classes of reaction diffusion equations where a parameter influences the equation as well as the boundary condition, J. Math. Anal. Appl., 476 (2019), 480-494.  doi: 10.1016/j.jmaa.2019.03.053. [9] J. Goddard II, Q. A. Morris, S. B. Robinson and R. Shivaji, An exact bifurcation diagram for a reaction diffusion equation arising in population dynamics, Bound. Value Probl., (2018), Paper No. 170, 17 pp. doi: 10.1186/s13661-018-1090-z. [10] R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications (Arlington, Tex., 1986), Lecture Notes in Pure and Appl. Math., Dekker, New York, 109 (1987), 561-566.

Figures(5)