We study positive solutions to classes of steady state reaction diffusion systems of the form:
$ \begin{equation*} \left\lbrace \begin{matrix}-\Delta u = \lambda f(v) ;\; \Omega\\ -\Delta v = \lambda g(u) ;\; \Omega\\ \frac{\partial u}{\partial \eta}+\sqrt{\lambda} u = 0; \; \partial \Omega\\ \frac{\partial v}{\partial \eta}+\sqrt{\lambda}v = 0; \; \partial \Omega\ \end{matrix} \right. \end{equation*} $
where $ \lambda>0 $ is a positive parameter, $ \Omega $ is a bounded domain in $ \mathbb{R}^N $; $ N > 1 $ with smooth boundary $ \partial \Omega $ or $ \Omega = (0, 1) $, $ \frac{\partial z}{\partial \eta} $ is the outward normal derivative of $ z $. Here $ f, g \in C^2[0, r) \cap C[0, \infty) $ for some $ r>0 $. Further, we assume that $ f $ and $ g $ are increasing functions such that $ f(0) = 0 = g(0) $, $ f'(0) = g'(0) = 1 $, $ f''(0)>0, g''(0)>0 $, and $ \lim\limits_{s \rightarrow \infty} \frac{f(Mg(s))}{s} = 0 $ for all $ M>0 $. Under certain additional assumptions on $ f $ and $ g $ we prove that the bifurcation diagram for positive solutions of this system is at least $ \Sigma- $shaped. We also discuss an example where $ f $ is sublinear at $ \infty $ and $ g $ is superlinear at $ \infty $ which satisfy our hypotheses.
Citation: |
[1] |
A. Acharya, N. Fonseka, J. Quiroa and R. Shivaji, $\Sigma$-Shaped Bifurcation Curves, Adv. Nonlinear Anal., 10 (2021), 1255-1266.
doi: 10.1515/anona-2020-0180.![]() ![]() ![]() |
[2] |
A. Acharya, N. Fonseka and R. Shivaji, Analysis of reaction diffusion systems where a parameter influences both the reaction terms as well as the bounday, Bound. Value Probl., (2021), Paper No. 15, 8 pp.
doi: 10.1186/s13661-021-01490-0.![]() ![]() ![]() |
[3] |
J. Ali, M. Ramaswamy and R. Shivaji, Multiple positive solutions for classes of elliptic systems with combined nonlinear effects, Differential Integral Equations, 19 (2006), 669-680.
![]() ![]() |
[4] |
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.
doi: 10.1137/1018114.![]() ![]() ![]() |
[5] |
A. Castro, J. B. Garner and R. Shivaji, Existence results for classes of sub-linear semipositone problems, Results Math., 23 (1993), 214-220.
doi: 10.1007/BF03322297.![]() ![]() ![]() |
[6] |
J. T. Cronin, J. Goddard and R. Shivaji, Effects of patch-matrix composition and individual movement response on population persistence at the patch-level, Bull. Math. Biol., 81 (2019), 3933-3975.
doi: 10.1007/s11538-019-00634-9.![]() ![]() ![]() |
[7] |
N. Fonseka, J. Machado and R. Shivaji, A study of logistic growth models influenced by the exterior matrix hostility and Grazing in an interior patch, Electron J. Qual. Theory Differ. Equ., (2020), Paper No. 17, 11 pp.
doi: 10.14232/ejqtde.2020.1.17.![]() ![]() ![]() |
[8] |
N. Fonseka, R. Shivaji, B. Son and K. Spetzer, Classes of reaction diffusion equations where a parameter influences the equation as well as the boundary condition, J. Math. Anal. Appl., 476 (2019), 480-494.
doi: 10.1016/j.jmaa.2019.03.053.![]() ![]() ![]() |
[9] |
J. Goddard II, Q. A. Morris, S. B. Robinson and R. Shivaji, An exact bifurcation diagram for a reaction diffusion equation arising in population dynamics, Bound. Value Probl., (2018), Paper No. 170, 17 pp.
doi: 10.1186/s13661-018-1090-z.![]() ![]() ![]() |
[10] |
R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications (Arlington, Tex., 1986), Lecture Notes in Pure and Appl. Math., Dekker, New York, 109 (1987), 561-566.
![]() ![]() |
Bifurcation diagram of (1.1) when hypotheses of Theorem 1.1(b)
Bifurcation diagram of (1.1) when hypotheses of Corollary 1
Shape of
Prototypical shapes of
Graph of