In this paper we deal with the null controllability for degenerate/singular parabolic systems with memory terms. To this aim, we first prove the null controllability property for some auxiliary nonhomogeneous degenerate/singular problems via new Carleman estimates for their corresponding adjoint systems. Then, under a condition on the kernels, using the Kakutani's fixed point theorem, we deduce null controllability results for the initial problems with memory.
Citation: |
[1] |
E. M. Ait Ben Hassi, F. Ammar Khodja, A. Hajjaj and L. Maniar, Carleman estimates and null controllability of coupled degenerate systems, Evol. Equ. Control Theory, 2 (2013), 441-459.
doi: 10.3934/eect.2013.2.441.![]() ![]() ![]() |
[2] |
B. Allal and G. Fragnelli, Null controllability of degenerate parabolic equation with memory, Math. Methods Appl. Sci., 44 (2021), 9163-9190.
doi: 10.1002/mma.7342.![]() ![]() ![]() |
[3] |
B. Allal, G. Fragnelli and J. Salhi, Null controllability for a singular heat equation with a memory term, Electron. J. Qual. Theory Differ. Equ., (2021), Paper No. 14, 24 pp.
doi: 10.14232/ejqtde.2021.1.1.![]() ![]() ![]() |
[4] |
B. Allal, G. Fragnelli and J. Salhi, On the null controllability of coupled systems of degenerate parabolic integro-differential equations, submitted.
![]() |
[5] |
B. Allal, A. Hajjaj, L. Maniar and J. Salhi, Null controllability for singular cascade systems of $n$-coupled degenerate parabolic equations by one control force, Evol. Equ. Control Theory, 10 (2021), 545-573.
doi: 10.3934/eect.2020080.![]() ![]() ![]() |
[6] |
B. Allal, A. Hajjaj, L. Maniar and J. Salhi, Lipschitz stability for some coupled degenerate parabolic systems with locally distributed observations of one component, Math. Control Relat. Fields, 10 (2020), 643-667.
doi: 10.3934/mcrf.2020014.![]() ![]() ![]() |
[7] |
G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials With Memory: Theory and Applications, Theory and applications. Springer, New York, 2012.
doi: 10.1007/978-1-4614-1692-0.![]() ![]() ![]() |
[8] |
F. Ammar-Khodja, A. Benabdallah and C. Dupaix, Null-controllability of some reaction-diffusion systems with one control force, J. Math. Anal. Appl., 320 (2006), 928-943.
doi: 10.1016/j.jmaa.2005.07.060.![]() ![]() ![]() |
[9] |
F. Ammar Khodja, A. Benabdallah, C. Dupaix and M. Gonzalez-Burgos, A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., 1 (2009), 427-457.
doi: 10.7153/dea-01-24.![]() ![]() ![]() |
[10] |
F. Ammar Khodja, A. Benabdallah, C. Dupaix and M. Gonzalez-Burgos, A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., 9 (2009), 267-291.
doi: 10.1007/s00028-009-0008-8.![]() ![]() ![]() |
[11] |
F. Ammar-Khodja, A. Benabdallah, C. Dupaix and I. Kostin, Null-controllability of some systems of parabolic type by one control force, ESAIM Control Optim. Calc. Var., 11 (2005), 426-448.
doi: 10.1051/cocv:2005013.![]() ![]() ![]() |
[12] |
J.-P. Aubin, L'Analyse non Linéaire et ses Motivations Économiques, Collection Mathématiques Appliquées pour la Maîtrise Masson, Paris, 1984.
![]() ![]() |
[13] |
F. Bloom, Ill-Posed Problems for Integro-Differential Equations in Mechanics and Electromagnetic Theory, SIAM Studies in Applied Mathematics, 3. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981.
![]() ![]() |
[14] |
P. Cannarsa and L. de Teresa, Controllability of $1$-D coupled degenerate parabolic equations, addendum and corrigendum, Electron. J. Differential Equations, (2009), No. 73, 21 pp.
![]() ![]() |
[15] |
P. Cannarsa, D. Rocchetti and J. Vancostenoble, Generation of analytic semi-groups in $L^2$ for a class of second order degenerate elliptic operators, Control Cybernet., 37 (2008), 831-878.
![]() ![]() |
[16] |
F. W. Chaves-Silva, L. Rosier and E. Zuazua., Null controllability of a system of viscoelasticity with a moving control, J. Math. Pures Appl., 101 (2014), 198-222.
doi: 10.1016/j.matpur.2013.05.009.![]() ![]() ![]() |
[17] |
F. W. Chaves-Silva, X. Zhang and E. Zuazua, Controllability of evolution equations with memory, SIAM Journal on Control and Optimization, 55 (2017), 2437-2459.
doi: 10.1137/151004239.![]() ![]() ![]() |
[18] |
E. B. Davies, Spectral Theory and Differential Operators, Cambridge Studies in Advanced
Mathematics, 42, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511623721.![]() ![]() ![]() |
[19] |
E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to null controllability, SIAM J. Control Optim., 45 (2006), 1395-1446.
doi: 10.1137/S0363012904439696.![]() ![]() ![]() |
[20] |
M. Fotouhi and L. Salimi, Controllability results for a class of one dimensional degenerate/singular parabolic equations, Commun. Pure Appl. Anal., 12 (2013), 1415-1430.
doi: 10.3934/cpaa.2013.12.1415.![]() ![]() ![]() |
[21] |
M. Fotouhi and L. Salimi, Null controllability of degenerate/singular parabolic equations, J. Dyn. Control Syst., 18 (2012), 573-602.
doi: 10.1007/s10883-012-9160-5.![]() ![]() ![]() |
[22] |
G. Fragnelli, Interior degenerate/singular parabolic equations in nondivergence form: Well-posedness and Carleman estimates, J. Differential Equations, 260 (2016), 1314-1371.
doi: 10.1016/j.jde.2015.09.019.![]() ![]() ![]() |
[23] |
G. Fragnelli and D. Mugnai, Control of Degenerate and Singular Parabolic Equation, BCAM SpringerBrief, 2021.
![]() |
[24] |
G. Fragnelli and D. Mugnai, Singular parabolic equations with interior degeneracy and non smooth coefficients: The Neumann case, Discrete Contin. Dyn. Syst.-S, 13 (2020), 1495-1511.
doi: 10.3934/dcdss.2020084.![]() ![]() ![]() |
[25] |
G. Fragnelli and D. Mugnai, Controllability of degenerate and singular parabolic problems: The double strong case with Neumann boundary conditions, Opuscula Math., 39 (2019), 207-225.
doi: 10.7494/OpMath.2019.39.2.207.![]() ![]() ![]() |
[26] |
G. Fragnelli, D. Mugnai, Controllability of strongly degenerate parabolic problems with strongly singular potentials, Electron. J. Qual. Theory Differ. Equ., (2018), 11 pp.
doi: 10.14232/ejqtde.2018.1.50.![]() ![]() ![]() |
[27] |
G. Fragnelli and D. Mugnai, Carleman estimates for singular parabolic equations with interior degeneracy and non smooth coefficients, Adv. Nonlinear Anal., 6 (2017), 61-84.
doi: 10.1515/anona-2015-0163.![]() ![]() ![]() |
[28] |
X. Fu, J. Yong and X. Zhang, Controllability and observability of the heat equations with hyperbolic memory kernel, J. Differatial Equations, 247 (2009), 2395-2439.
doi: 10.1016/j.jde.2009.07.026.![]() ![]() ![]() |
[29] |
A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.
![]() ![]() |
[30] |
M. González-Burgos and L. de Teresa, Controllability results for cascade systems of $m$ coupled parabolic PDEs by one control force, Port. Math., 67 (2010), 91-113.
doi: 10.4171/PM/1859.![]() ![]() ![]() |
[31] |
S. Guerrero and O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory, ESAIM Control Optim. Calc. Var., 19 (2013), 288-300.
doi: 10.1051/cocv/2012013.![]() ![]() ![]() |
[32] |
A. Hajjaj, L. Maniar and J. Salhi, Carleman estimates and null controllability of degenerate/singular parabolic systems, Electron. J. Differential Equations, (2016), 25 pp.
![]() ![]() |
[33] |
A. Halanay and L. Pandolfi, Lack of controllability of the heat equation with memory, Systems Control Lett., 61 (2012), 999-1002.
doi: 10.1016/j.sysconle.2012.07.002.![]() ![]() ![]() |
[34] |
V. Lakshmikantham and M. Rama Mohana Rao, Theory of Integro-Differential Equations. Stability and Control: Theory, Methods and Applications, 1. Gordon and Breach Science Publishers, Lausanne, 1995.
![]() ![]() |
[35] |
J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Die Grundlehren der Mathematischen Wissenschaften, Band 170 Springer-Verlag, New York-Berlin, 1971.
![]() ![]() |
[36] |
J. L. Lions, Contrôle des Systèmes Distribués Singuliers, Méthodes Mathématiques de l'Informatique, 13. Gauthier-Villars, Montrouge, 1983.
![]() ![]() |
[37] |
Q. Lü, X. Zhang and E. Zuazua, Null controllability for wave equations with memory, J. Math. Pures Appl., 108 (2017), 500-531.
doi: 10.1016/j.matpur.2017.05.001.![]() ![]() ![]() |
[38] |
J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, 87. Birkhäuser Verlag, Basel, 1993.
doi: 10.1007/978-3-0348-8570-6.![]() ![]() ![]() |
[39] |
J. Salhi, Null controllability for a singular coupled system of degenerate parabolic equations in nondivergence form, Electron. J. Qual. Theory Differ. Equ., (2018), 28 pp.
doi: 10.14232/ejqtde.2018.1.31.![]() ![]() ![]() |
[40] |
J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[41] |
Q. Tao and H. Gao, On the null controllability of heat equation with memory, J. Math. Anal. Appl., 440 (2016), 1-13.
doi: 10.1016/j.jmaa.2016.03.036.![]() ![]() ![]() |
[42] |
J. Vancostenoble, Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 761-790.
doi: 10.3934/dcdss.2011.4.761.![]() ![]() ![]() |
[43] |
G. Wang, Y. Zhang and E. Zuazua, Reachable subspaces, control regions and heat equations with memory, preprint, arXiv: 2101.10615v1.
![]() |
[44] |
X. Zhou and H. Gao, Interior approximate and null controllability of the heat equation with memory, Comput. Math. Appl., 67 (2014), 602-613.
doi: 10.1016/j.camwa.2013.12.005.![]() ![]() ![]() |