[1]
|
T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems, SpringerBriefs in Mathematics, Springer, Cham, 2016.
doi: 10.1007/978-3-319-49247-6.
|
[2]
|
T. Caraballo, X. Han and P. Kloeden, Chemostats with time-dependent input and wall growth, Appl. Math. Inf. Sci., 9 (2015), 2283-2296.
doi: 10.12785/amis.
|
[3]
|
T. Caraballo, X. Han and P. E. Kloeden, Non-autonomous chemostats with variable delays, SIAM Journal on Mathematical Analysis, 47 (2015), 2178-2199.
doi: 10.1137/14099930X.
|
[4]
|
T. Caraballo, X. Han, P. E. Kloeden and A. Rapaport, Dynamics of non-autonomous chemostat models, Continuous and Distributed Systems. Ⅱ, Stud. Syst. Decis. Control, Springer, Cham, 30 (2015), 103-120.
doi: 10.1007/978-3-319-19075-4_6.
|
[5]
|
A. Carry, Piles of ancient poop reavel 'extinction event' in human gut bacteria, Science AAAS, (2021).
|
[6]
|
I. Cho and M. J. Blaser, The human microbiome: At the interface of health and disease, Nat. Rev. Genet., 13 (2012), 260-270.
doi: 10.1038/nrg3182.
|
[7]
|
A. V. Contreras, B. Cocom-Chan, G. Hernandez-Montes, T. Portillo-Bobadilla and O. Resendis-Antonio, Host-microbiome interaction and cancer: Potential application in precision medicine, Front. Physiol., 7 (2016), 606.
doi: 10.3389/fphys.2016.00606.
|
[8]
|
J. J. Farrell, L. Zhang, H. Zhou, D. Chia, D. Elashoff, D. Akin, B. J. Paster, K. Joshipura and D. T. Wong, Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer, Gut, 61 (2011), 582-588.
doi: 10.1136/gutjnl-2011-300784.
|
[9]
|
T. Gibson and G. Gerber, Robust and scalable models of microbiome dynamics for bacteriotherapy design, (2018).
|
[10]
|
J. A. Gilbert, R. A. Quinn, J. Debelius, Z. Z. Xu, J. Morton, N. Garg, J. K. Jansson, P. C. Dorrestein and R. Knight, Microbiome-wide association studies link dynamic microbial consortia to disease, Nature, 535 (2016), 94-103.
doi: 10.1038/nature18850.
|
[11]
|
A. Gonzalez, J. Stombaugh, C. Lozupone, P. J. Turnbaugh, J. I. Gordon and R. Knight, The mind-body-microbial continuum, Dialogues Clin. Neurosci., 13 (2011), 55-62.
|
[12]
|
A. L. Gould, V. Zhang, L. Lamberti, E. W. Jones, B. Obadia, N. Korasidis, A. Gavryushkin, J. M. Carlson, N. Beerenwinkel and W. B. Ludington, Microbiome interactions shape host fitness, PNAS, 115 (2018), E11951–E11960.
doi: 10.1073/pnas. 1809349115.
|
[13]
|
J. Halfvarson, C. J. Brislawn, R. Lamendella, Y. Vázquez-Baeza, W. A. Walters, L. M. Bramer, M. D'Amato, F. Bonfiglio, D. McDonald, A. Gonzalez, E. E. McClure, M. F. Dunklebarger, R. Knight and J. K. Jansson, Dynamics of the human gut microbiome in inflammatory bowel disease, Nat. Microbiol., 2 (2017), 1-7.
doi: 10.1038/nmicrobiol.2017.4.
|
[14]
|
L. V. Hooper, D. R. Littman and A. J. Macpherson, Interactions between the microbiota and the immune system, Science, 336 (2012), 1268-1273.
doi: 10.1126/science.1223490.
|
[15]
|
L. V. Hooper, M. H. Wong, A. Thelin, L. Hansson, P. G. Falk and J. I. Gordon, Molecular analysis of commensal host-microbial relationships in the intestine, Science, 291 (2001), 881-884.
doi: 10.1126/science.291.5505.881.
|
[16]
|
S. Huitzil, S. Sandoval-Motta, A. Frank and M. Aldana, Modeling the role of the microbiome in evolution, Front. Physiol, (2018).
doi: 10.3389/fphys. 2018.01836.
|
[17]
|
P. E. Kloeden and T. Lorenz, Mean-square random dynamical systems, J.Differential Equations, 253 (2012), 1422-1438.
doi: 10.1016/j.jde.2012.05.016.
|
[18]
|
P. E. Kloeden and T. Lorenz, Pullback incremental attraction, Nonauton. Dyn. Syst., 1 (2013), 53-60.
doi: 10.2478/msds-2013-0004.
|
[19]
|
P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176. American Mathematical Society, Providence, RI, 2011.
doi: 10.1090/surv/176.
|
[20]
|
P. E. Kloeden and M. Yang, An Introduction to Nonautonomous Dynamical Systems and their Applications, World Scientific, Singapore, 2020.
|
[21]
|
R. E. Ley, Obesity and the human microbiome, Curr. Opin. Gastroenterol, 26 (2010), 5-11.
doi: 10.1097/MOG.0b013e328333d751.
|
[22]
|
R. E. Ley, P. J. Turnbaugh, S. Klein and J. I. Gordon, Microbial ecology: Human gut microbes associated with obesity, Nature, 444 (2006), 1022.
|
[23]
|
X. C. Morgan, T. L. Tickle, H. Sokol, D. Gevers, K. L. Devaney, D. V. Ward, J. A. Reyes, S. A. Shah, N. LeLeiko, S. B. Snapper, A. Bousvaros, J. Korzenik, B. E. Sands, R. J. Xavier and C. Huttenhower, Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment, Genome Biol., 13 (2012), R79.
doi: 10.1186/gb-2012-13-9-r79.
|
[24]
|
V. S. H. Rao and P. R. S. Rao, Dynamical Models and Control of Biological Systems, Springer-Verlag, Berlin, 2009.
|
[25]
|
G. Rogers, D. Keating, R. Young, M. Wong, J. Licinio and S. Wesselingh, From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways, Mole. Physchiatry, 21 (2016), 738-748.
doi: 10.1038/mp.2016.50.
|
[26]
|
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge Studies in Mathematical Biology, 13. Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511530043.
|
[27]
|
R. R. Stein, V. Bucci, N. C. Toussaint, C. G. Buffie, G. Rätsch, E. G. Pamer, C. Sander and J. B. Xavier, Ecological modeling from time-series inference: Insight into dynamics and stability of intestinal microbiota, PLOS Computational Biology, 9 (2013), 31003388.
doi: 10.1371/journal.pcbi.1003388.
|