-
Previous Article
On the Cahn-Hilliard-Darcy system with mass source and strongly separating potential
- DCDS-S Home
- This Issue
-
Next Article
Trajectory attractors for 3D damped Euler equations and their approximation
About the stability to Timoshenko system with pointwise dissipation
1. | National Laboratory for Scientific Computation, Rua Getulio Vargas 333, Petrópolis, RJ, Brazil, DMAT - Universidad del Bío-Bío, Avenida Collao 1202, Casilla 5 - Concepción, Chile, IM - UFRJ, Cidade Universitária, Rio de Janeiro, Brazil |
2. | DICATAM, Università degli Studi di Brescia, Via Valotti 9, 25133 Brescia, Italy |
In this paper we study the Timoshenko model over the interval $ (0, \ell) $ with pointwise dissipation at $ \xi\in (0, \ell) $. We prove that this dissipation produces exponential stability when $ \xi\in \mathbb{Q}\ell $ and $ \xi\ne \frac{n}{2m+1}\ell $, where $ n, m\in \mathbb{N} $ and $ n $, and $ 2m+1 $ are co-prime.
References:
[1] |
F. Alabau-Boussouira,
Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 643-669.
doi: 10.1007/s00030-007-5033-0. |
[2] |
K. Ammari,
Uniform stabilization of beams by means of a pointwise feedback, Differential Integral Equations, 14 (2001), 1153-1167.
|
[3] |
F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera and R. Racke,
Energy decay for Timoshenko systems of memory type, J. Differential Equations, 194 (2003), 82-115.
doi: 10.1016/S0022-0396(03)00185-2. |
[4] |
C. J. K. Batty and T. Duyckaerts,
Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780.
doi: 10.1007/s00028-008-0424-1. |
[5] |
M. M. Cavalcanti, W. J. Corrêa, V. N. Domingos Cavalcanti, M. A. Jorge Silva and J. P. Zanchetta, Uniform stability for a semilinear non-homogeneous Timoshenko system with localized nonlinear damping, Z. Angew. Math. Phys., 72 (2021), Paper No. 191, 20 pp.
doi: 10.1007/s00033-021-01622-7. |
[6] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, F. A. Falcão Nascimento, I. Lasiecka and J. H. Rodrigues,
Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping, Z. Angew. Math. Phys., 65 (2014), 1189-1206.
doi: 10.1007/s00033-013-0380-7. |
[7] |
V. Danese, F. Dell'Oro and V. Pata,
Stability analysis of abstract systems of Timoshenko type, J. Evol. Equ., 16 (2016), 587-615.
doi: 10.1007/s00028-015-0314-2. |
[8] |
A. Djebabla and N.-E. Tatar,
Stabilization of the Timoshenko beam by thermal effect, Mediterr. J. Math., 7 (2010), 373-385.
doi: 10.1007/s00009-010-0058-8. |
[9] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. |
[10] |
H. D. Fernández Sare and R. Racke,
On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., 194 (2009), 221-251.
doi: 10.1007/s00205-009-0220-2. |
[11] |
M. Grasselli, V. Pata and G. Prouse,
Longtime behavior of a viscoelastic Timoshenko beam. Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10 (2004), 337-348.
doi: 10.3934/dcds.2004.10.337. |
[12] |
A. Y. Khapalov,
Exponential decay for the one-dimensional wave equation with internal pointwise damping, Math. Methods Appl. Sci., 20 (1997), 1171-1183.
doi: 10.1002/(SICI)1099-1476(19970925)20:14<1171::AID-MMA907>3.0.CO;2-B. |
[13] |
J. U. Kim and Y. Renardy,
Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.
doi: 10.1137/0325078. |
[14] |
A. Labuschagne, N. F. J. van Rensburg and A. J. van der Merwe,
Comparison of linear beam theories, Math. Comput. Modelling, 49 (2009), 20-30.
doi: 10.1016/j.mcm.2008.06.006. |
[15] |
K. S. Liu,
Energy decay problems in the design of a point stabilizer for coupled string vibrating systems, SIAM J. Control Optim., 26 (1988), 1348-1356.
doi: 10.1137/0326076. |
[16] |
S. A. Messaoudi and A. Fareh,
Energy decay in a Timoshenko-type system of thermoelasticity of type Ⅲ with different wave-propagation speeds, Arab. J. Math. (Springer), 2 (2013), 199-207.
doi: 10.1007/s40065-012-0061-y. |
[17] |
J. E. Muñoz Rivera and R. Racke,
Mildly dissipative nonlinear Timoshenko systems–-global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-278.
doi: 10.1016/S0022-247X(02)00436-5. |
[18] |
A. F. Neves, H. de S. Ribeiro and O. Lopes,
On the spectrum of evolution operators generated by hyperbolic systems, J. Funct. Anal., 67 (1986), 320-344.
doi: 10.1016/0022-1236(86)90029-7. |
[19] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[20] |
J. Prüss,
On the spectrum of $C_{0}$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.
doi: 10.2307/1999112. |
[21] |
C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro,
Exponential stability for the Timoshenko system with two weak dampings, Appl. Math. Lett., 18 (2005), 535-541.
doi: 10.1016/j.aml.2004.03.017. |
[22] |
B. Said-Houari and A. Kasimov,
Decay property of Timoshenko system in thermoelasticity, Math. Methods Appl. Sci., 35 (2012), 314-333.
doi: 10.1002/mma.1569. |
[23] |
A. Soufyane,
Exponential stability of the linearized nonuniform Timoshenko beam, Nonlinear Anal. Real World Appl., 10 (2009), 1016-1020.
doi: 10.1016/j.nonrwa.2007.11.019. |
[24] |
H. Timoshenko, Vibration Problems in Engineering, D van Nostrand Company, Inc., New-York, 1937. |
[25] |
R. W. Traill-Nash and A. R. Collar,
The effects of shear flexibility and rotatory inertia on the bending vibrations of beams, Quart. J. Mech. Appl. Math., 6 (1953), 186-222.
doi: 10.1093/qjmam/6.2.186. |
[26] |
Q.-X. Yan, S.-H. Hou and D.-X. Feng,
Asymptotic behavior of Timoshenko beam with dissipative boundary feedback, J. Math. Anal. Appl., 269 (2002), 556-577.
doi: 10.1016/S0022-247X(02)00036-7. |
show all references
References:
[1] |
F. Alabau-Boussouira,
Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 643-669.
doi: 10.1007/s00030-007-5033-0. |
[2] |
K. Ammari,
Uniform stabilization of beams by means of a pointwise feedback, Differential Integral Equations, 14 (2001), 1153-1167.
|
[3] |
F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera and R. Racke,
Energy decay for Timoshenko systems of memory type, J. Differential Equations, 194 (2003), 82-115.
doi: 10.1016/S0022-0396(03)00185-2. |
[4] |
C. J. K. Batty and T. Duyckaerts,
Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ., 8 (2008), 765-780.
doi: 10.1007/s00028-008-0424-1. |
[5] |
M. M. Cavalcanti, W. J. Corrêa, V. N. Domingos Cavalcanti, M. A. Jorge Silva and J. P. Zanchetta, Uniform stability for a semilinear non-homogeneous Timoshenko system with localized nonlinear damping, Z. Angew. Math. Phys., 72 (2021), Paper No. 191, 20 pp.
doi: 10.1007/s00033-021-01622-7. |
[6] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, F. A. Falcão Nascimento, I. Lasiecka and J. H. Rodrigues,
Uniform decay rates for the energy of Timoshenko system with the arbitrary speeds of propagation and localized nonlinear damping, Z. Angew. Math. Phys., 65 (2014), 1189-1206.
doi: 10.1007/s00033-013-0380-7. |
[7] |
V. Danese, F. Dell'Oro and V. Pata,
Stability analysis of abstract systems of Timoshenko type, J. Evol. Equ., 16 (2016), 587-615.
doi: 10.1007/s00028-015-0314-2. |
[8] |
A. Djebabla and N.-E. Tatar,
Stabilization of the Timoshenko beam by thermal effect, Mediterr. J. Math., 7 (2010), 373-385.
doi: 10.1007/s00009-010-0058-8. |
[9] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. |
[10] |
H. D. Fernández Sare and R. Racke,
On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., 194 (2009), 221-251.
doi: 10.1007/s00205-009-0220-2. |
[11] |
M. Grasselli, V. Pata and G. Prouse,
Longtime behavior of a viscoelastic Timoshenko beam. Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10 (2004), 337-348.
doi: 10.3934/dcds.2004.10.337. |
[12] |
A. Y. Khapalov,
Exponential decay for the one-dimensional wave equation with internal pointwise damping, Math. Methods Appl. Sci., 20 (1997), 1171-1183.
doi: 10.1002/(SICI)1099-1476(19970925)20:14<1171::AID-MMA907>3.0.CO;2-B. |
[13] |
J. U. Kim and Y. Renardy,
Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.
doi: 10.1137/0325078. |
[14] |
A. Labuschagne, N. F. J. van Rensburg and A. J. van der Merwe,
Comparison of linear beam theories, Math. Comput. Modelling, 49 (2009), 20-30.
doi: 10.1016/j.mcm.2008.06.006. |
[15] |
K. S. Liu,
Energy decay problems in the design of a point stabilizer for coupled string vibrating systems, SIAM J. Control Optim., 26 (1988), 1348-1356.
doi: 10.1137/0326076. |
[16] |
S. A. Messaoudi and A. Fareh,
Energy decay in a Timoshenko-type system of thermoelasticity of type Ⅲ with different wave-propagation speeds, Arab. J. Math. (Springer), 2 (2013), 199-207.
doi: 10.1007/s40065-012-0061-y. |
[17] |
J. E. Muñoz Rivera and R. Racke,
Mildly dissipative nonlinear Timoshenko systems–-global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-278.
doi: 10.1016/S0022-247X(02)00436-5. |
[18] |
A. F. Neves, H. de S. Ribeiro and O. Lopes,
On the spectrum of evolution operators generated by hyperbolic systems, J. Funct. Anal., 67 (1986), 320-344.
doi: 10.1016/0022-1236(86)90029-7. |
[19] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[20] |
J. Prüss,
On the spectrum of $C_{0}$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.
doi: 10.2307/1999112. |
[21] |
C. A. Raposo, J. Ferreira, M. L. Santos and N. N. O. Castro,
Exponential stability for the Timoshenko system with two weak dampings, Appl. Math. Lett., 18 (2005), 535-541.
doi: 10.1016/j.aml.2004.03.017. |
[22] |
B. Said-Houari and A. Kasimov,
Decay property of Timoshenko system in thermoelasticity, Math. Methods Appl. Sci., 35 (2012), 314-333.
doi: 10.1002/mma.1569. |
[23] |
A. Soufyane,
Exponential stability of the linearized nonuniform Timoshenko beam, Nonlinear Anal. Real World Appl., 10 (2009), 1016-1020.
doi: 10.1016/j.nonrwa.2007.11.019. |
[24] |
H. Timoshenko, Vibration Problems in Engineering, D van Nostrand Company, Inc., New-York, 1937. |
[25] |
R. W. Traill-Nash and A. R. Collar,
The effects of shear flexibility and rotatory inertia on the bending vibrations of beams, Quart. J. Mech. Appl. Math., 6 (1953), 186-222.
doi: 10.1093/qjmam/6.2.186. |
[26] |
Q.-X. Yan, S.-H. Hou and D.-X. Feng,
Asymptotic behavior of Timoshenko beam with dissipative boundary feedback, J. Math. Anal. Appl., 269 (2002), 556-577.
doi: 10.1016/S0022-247X(02)00036-7. |
[1] |
Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations and Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423 |
[2] |
Haoyue Cui, Dongyi Liu, Genqi Xu. Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback. Mathematical Control and Related Fields, 2018, 8 (2) : 383-395. doi: 10.3934/mcrf.2018015 |
[3] |
Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks and Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297 |
[4] |
Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689 |
[5] |
Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations and Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021 |
[6] |
Catherine Lebiedzik. Uniform stability in a vectorial full Von Kármán thermoelastic system with solenoidal dissipation and free boundary conditions. Evolution Equations and Control Theory, 2021, 10 (4) : 767-796. doi: 10.3934/eect.2020092 |
[7] |
Thierry Cazenave, Zheng Han. Asymptotic behavior for a Schrödinger equation with nonlinear subcritical dissipation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4801-4819. doi: 10.3934/dcds.2020202 |
[8] |
Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067 |
[9] |
Salim A. Messaoudi, Muhammad I. Mustafa. A general stability result in a memory-type Timoshenko system. Communications on Pure and Applied Analysis, 2013, 12 (2) : 957-972. doi: 10.3934/cpaa.2013.12.957 |
[10] |
Baowei Feng. On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4729-4751. doi: 10.3934/dcds.2017203 |
[11] |
Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1009-1034. doi: 10.3934/jimo.2021006 |
[12] |
Monica Conti, Stefania Gatti, Alain Miranville. Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 485-505. doi: 10.3934/dcdss.2012.5.485 |
[13] |
Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041 |
[14] |
M. Grasselli, Vittorino Pata, Giovanni Prouse. Longtime behavior of a viscoelastic Timoshenko beam. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 337-348. doi: 10.3934/dcds.2004.10.337 |
[15] |
Jian Yang. Asymptotic behavior of solutions for competitive models with a free boundary. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3253-3276. doi: 10.3934/dcds.2015.35.3253 |
[16] |
Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57 |
[17] |
Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure and Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667 |
[18] |
J.E. Muñoz Rivera, Reinhard Racke. Global stability for damped Timoshenko systems. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1625-1639. doi: 10.3934/dcds.2003.9.1625 |
[19] |
Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779 |
[20] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure and Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]