[1]
|
W. Ashraf, Carbonation of cement-based materials: Challenges and opportunities, Construction and Building Materials, 120 (2016), 558-570.
|
[2]
|
G. Bretti, M. Ceseri, M. C. Ciacchella, R. Natalini, M. L. Santarelli and G. Tiracorrendo, A forecasting model for the porosity variation during the carbonation process, International Journal on Geomathematics, 2022. Submitted
|
[3]
|
G. Bretti, L. Gosse and N. Vauchelet, Diffusive limits of 2D well-balanced schemes for kinetic models of neutron transport, ESAIM Math. Model. Numer. Anal., 55 (2021), 2949-2980.
doi: 10.1051/m2an/2021077.
|
[4]
|
M. Ceseri and J. M. Stockie, A three-phase free boundary problem with melting ice and dissolving gas, European J. Appl. Math., 25 (2014), 449-480.
doi: 10.1017/S0956792513000430.
|
[5]
|
F. Clarelli, A. Fasano and R. Natalini, Mathematics and monument conservation: Free boundary models of marble sulfation, SIAM J. Appl. Math., 69 (2008), 149-168.
doi: 10.1137/070695125.
|
[6]
|
F. Freddi and L. Mingazzi, Phase-field simulations of cover cracking in corroded RC beams, Procedia Structural Integrity, 33 (2021), 371-384.
|
[7]
|
R. M. Furzeland, A comparative study of numerical methods for moving boundary problems, J. Inst. Math. Appl., 26 (1980), 411-429.
doi: 10.1093/imamat/26.4.411.
|
[8]
|
Lindsey L Climate Change: Atmospheric Carbon Dioxide, 2020. https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide (Accessed: 18 March 2022).
|
[9]
|
S. Kashef-Haghighi, Y. Shao and S. Ghoshal, Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing, Cement and Concrete Research, 67, 20151–0.
|
[10]
|
C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44 (2003), 139-181.
doi: 10.1016/S0168-9274(02)00138-1.
|
[11]
|
K. Kovler and S. Zhutovsky, Overview and future trends of shrinkage research, Materials and Structures, 39 (2006), 827-847.
|
[12]
|
A. Leemann and F. Moro, Carbonation of concrete: The role of CO2 concentration, relative humidity and CO2 buffer capacity, Materials and Structures, 50 (2017), 1-4.
|
[13]
|
F. Matsushita, Y. Aono and S. Shibata, Calcium silicate structure and carbonation shrinkage of a tobermorite-based material, Cement and Concrete Research, 34 (2004), 1251-1257.
|
[14]
|
I. Monteiro, F. A. Branco, J. de Brito and R. Neves, Statistical analysis of the carbonation coefficient in open air concrete structures, Construction and Building Materials, 29 (2012), 263-269.
|
[15]
|
G. Pan and Q. Shen abd J. Li, Microstructure of cement paste at different carbon dioxide concentrations, Magazine of Concrete Research, 70 (2018), 154-162.
|
[16]
|
V. G. Papadakis, C. G. Vayenas and M. N. Fardis, Experimental investigation and mathematical modeling of the concrete carbonation problem, Chemical Engineering Science, 46 (1991), 1333-1338.
|
[17]
|
L. Pareschi and G. Russo, Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput., 25 (2005), 129-155.
doi: 10.1007/s10915-004-4636-4.
|
[18]
|
M. A. Peter, A. Muntean, S. A. Meier and M. Böhm, Competition of several carbonation reactions in concrete: A parametric study, Cement and Concrete Research, 38 (2008), 1385-1393.
|
[19]
|
B. Šavija and M. Luković, Carbonation of cement paste: Understanding, challenges, and opportunities, Construction and Building Materials, 117 (2016), 285-301.
|
[20]
|
A. Steffens, D. Dinkler and H. Ahrens, Modeling carbonation for corrosion risk prediction of concrete structures, Cement and Concrete Research, 32 (2002), 935-941.
|
[21]
|
Y. Sumra, S. Payam and I. Zainah, The pH of cement-based materials: A review, Journal of Wuhan University of Technology-Mater. Sci. Ed., 35 (2020), 908-924.
|
[22]
|
F. P. Torgal, S. Miraldo, J. A. Labrincha and J. De Brito, An overview on concrete carbonation in the context of eco-efficient construction: Evaluation, use of SCMs and/or RAC, Construction and Building Materials, 36 (2012), 141-150.
|